In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the...In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the blade electrodes.A range of experimental parameters,including the inter-electrode spacing,gas flow rate,applied voltage,and the type of the powder,were systematically varied to elucidate the influence of solid powder matter on the dynamics of gliding arc discharge(GAD).The discharge images were captured by ICCD and digital camera to investigate the mass transfer characteristics of GS-GAD,and the electrical parameters,such as the effective values of voltage,current,and discharge power were record to reveal the discharge characteristics of GS-GAD.The results demonstrate that powder undergoes spontaneous movement towards the upper region of the gliding arc due to the influence of electric field force.Increasing the discharge voltage,decreasing relative dielectric constant of the powder and reducing the electrode-to-sieve-plate distance all contribute to a greater involvement of powder in the GAD process,subsequently resulting in an enhanced powder concentration within the GAD region.Additionally,powder located beneath the gliding arc experiences downward resistance caused by the opposing gas flow and arc.Excessive gas flow rate notably hampers the powder concentration within the discharge region,and the velocity of powder motion in the upper part of the GAD region is reduced.Under the condition of electrode-to-sieve-plate distance of 30 mm,gas flow rate of 1.5 L/min,and peak-to-peak voltage of 31 kV,the best combination of arc gliding and powder spark discharge phenomena can be achieved with the addition of Al_(2)O_(3) powder.展开更多
In this work the effects of O_2 concentration on the pulsed dielectric barrier discharge in helium-oxygen mixture at atmospheric pressure have been numerically researched by using a one-dimensional fluid model in conj...In this work the effects of O_2 concentration on the pulsed dielectric barrier discharge in helium-oxygen mixture at atmospheric pressure have been numerically researched by using a one-dimensional fluid model in conjunction with the chosen key species and chemical reactions.The reliability of the used model has been examined by comparing the calculated discharge current with the reported experiments. The present work presents the following significant results. The dominative positive and negative particles are He_2~+ and O_2^-, respectively, the densities of the reactive oxygen species(ROS) get their maxima nearly at the central position of the gap, and the density of the ground state O is highest in the ROS. The increase of O_2 concentration results in increasingly weak discharge and the time lag of the ignition. For O_2 concentrations below 1.1%,the density of O is much higher than other species, the averaged dissipated power density presents an evident increase for small O_2 concentration and then the increase becomes weak. In particular,the total density of the reactive oxygen species reaches its maximums at the O_2 concentration of about 0.5%. This characteristic further convinces the experimental observation that the O_2 concentration of 0.5% is an optimal O_2/He ratio in the inactivation of bacteria and biomolecules when radiated by using the plasmas produced in a helium oxygen mixture.展开更多
An atmospheric pressure plasma jet generated in Ar and O2/Ar mixtures has been investigated by specially designed equipment with double power electrodes at 20~32 kHz, and their effects on the cleaning of surfaces have...An atmospheric pressure plasma jet generated in Ar and O2/Ar mixtures has been investigated by specially designed equipment with double power electrodes at 20~32 kHz, and their effects on the cleaning of surfaces have been studied. Properties of the jet discharge are studied by electrical diagnostics, including the waveform of discharge voltage, discharge current and the Q-V Lissajous figures. The optical emission spectroscopy is used to measure the plasma parameters, such as the excitation temperature and the gas temperature. It is found that the consumed power and the excitation temperature increase with increase of the discharge frequency. On the other hand, at the same discharge frequency, these parameters in O2/Ar mixture plasma are found to be much larger. The effect on surface cleaning is studied from the changes in the contact angle. For Ar plasma jet, the contact angle decreases with increase of the discharge frequency. For O2/Ar mixture plasma jet, the contact angle decreases with increase of discharge frequency up to 26 kHz, however, further increase of discharge frequency does not show further decrease in the contact angle. At the same discharge frequency, the contact angle after O2/Ar mixture plasma cleaning is found to be much lower compared to the case of pure Ar. From the results of quadrupole mass-spectrum analysis, we can identify more fragment molecules of CO and H2O in the emitted gases after O2/Ar plasma jet treatment compared with Ar plasma jet treatment, which are produced by the decomposition of surface organic contaminants during the cleaning process.展开更多
The surface dielectric barrier discharge (SDBD) plasma actuator has shown great promise as an aerodynamic flow control device. In this paper, the encapsulated electrode width of a SDBD actuator is changed to study t...The surface dielectric barrier discharge (SDBD) plasma actuator has shown great promise as an aerodynamic flow control device. In this paper, the encapsulated electrode width of a SDBD actuator is changed to study the airflow acceleration behavior. The effects of encapsulated electrode width on the actuator performance are experimentally investigated by measuring the dielectric layer surface potential, time-averaged ionic wind velocity and thrust force. Experimental results show that the airflow velocity and thrust force increase with the encapsulated electrode width. The results can be attributed to the distinct plasma distribution at different encapsulated electrode widths.展开更多
In this study, we employed a nonthermal atmospheric pressure plasma(NTAPP) jet to evaluate the effect of plasma treatment on the durability of resin–dentin bonding under a thermocycling challenge. Furthermore, we ass...In this study, we employed a nonthermal atmospheric pressure plasma(NTAPP) jet to evaluate the effect of plasma treatment on the durability of resin–dentin bonding under a thermocycling challenge. Furthermore, we assessed the degradation resistance of plasma-treated collagen under a sodium hypochlorite(NaClO) challenge. We assessed the beneficial effect of NTAPP treatment on the acid-etched dentin–bonding interface by testing the micro-tensile bond strength and examining the morphology. We found that the immediate bonding strength of the dentin significantly increased after NTAPP treatment. Compared with the control group, NTAPP resulted in a more prominent effect on the bonding durability of the dentin–adhesive interface after treatment for 5 or 10 s. Simultaneously, the mechanical strength of dentin collagen under the NaClO challenge was improved. Our results indicate that, in optimal conditions, NTAPP could be a promising method to protect dentin collagen and to improve the bonding durability between dentin and etch-and-rinse adhesives.展开更多
Wheat (Triticum aestivum) seeds were treated with atmospheric pressure gliding arc discharge plasmas to investigate the effects on water absorption, seed germination rate, seedling growth and yield in wheat. The sur...Wheat (Triticum aestivum) seeds were treated with atmospheric pressure gliding arc discharge plasmas to investigate the effects on water absorption, seed germination rate, seedling growth and yield in wheat. The surface architectures and functionalities of the seeds were found to modify due to plasma treatments. 6 rain treatment was provided 95%-100% germination rate. For the treatment duration of 3 and 9 rain the growth activity, dry matter accumulation, leaves chlorophyll contents, longest spikes, number of spikes/spikelet and total soluble protein content in shoots were improved. The grain yield of wheat was increased ,--20% by 6 min treatment with H2O/O2 plasma with respect to control.展开更多
Enterococcus faecalis (E. faecalis) is a microorganism that can survive extreme challenges in obturated root canals. The aim of this study was to evaluate the efficacy of a non-thermal atmospheric pressure plasma pl...Enterococcus faecalis (E. faecalis) is a microorganism that can survive extreme challenges in obturated root canals. The aim of this study was to evaluate the efficacy of a non-thermal atmospheric pressure plasma plume against E. faecalis in vitro. A non-thermal atmospheric pressure plasma jet device which could generate a cold plasma plume carrying a peak current of 300 mA was used. The antibacterial efficacy of this device against E. faecalis and its biofihn un- der different conditions was detected. The antibacterial efficacy of the plasma against E. faecalis and Staphylococcus aureus (S. aureus) was also evaluated. After plasma treatment, the average diameter of inhibition zone on S. aureus and E. faecalis was 2.62±0.26 cm and 1.06±0.30 cm, respectively (P 〈 0.05). The diameter was increased with prolongation of the treatment dura- tion. The diameters of inhibition zone of the sealed Petri dishes were larger than those of the uncovered Petri dishes. There was significant difference in colony-forming units between plasma group and control group on E. faecalis biofilm (P 〈 0.01). The transmission electron microscopy revealed that the ultrastructural changes eytoderm of E. faecalis were observed after treatment for 2min. It is concluded that the non-thermal atmospheric pressure plasma could serve as an effective adjunct to standard endodontie microbial treatment.展开更多
Atmospheric pressure cold plasma, with advantages such as high particle activity, no thermal damage, high efficiency and direct and friendly contact with human tissues, is considered to have great potential in biomedi...Atmospheric pressure cold plasma, with advantages such as high particle activity, no thermal damage, high efficiency and direct and friendly contact with human tissues, is considered to have great potential in biomedical applications. Therefore, 'plasma medicine' as a new interdiscipline has been developed in the past two decades. This review first briefly describes the development of typical plasma sources suitable for biomedical applications, and those with different discharge forms are simply compared, evaluated and summarized. Subsequently, measurement of the crucial gaseous reactive particles(e.g. OH and O) and their spatio-temporal distributions are introduced. Meanwhile, the generation and variation rules and the related critical macroscopic parameters of the plasma-induced aqueous reactive species are summarized. Finally, related studies in the last ten years on the mechanisms of the plasma-driven microbial inactivation and plasma-induced apoptosis of cancer cells are introduced. Moreover, some scientific problems that need to be urgently solved in the field of plasma medicine are also discussed. This review will provide useful guidance for future related research.展开更多
Three different low-temperature plasma-based methods were used to improve the surface hydrophilicity of polyethy- lene (PE) films, and all the modification processes were carried out by employing an atmospheric pres...Three different low-temperature plasma-based methods were used to improve the surface hydrophilicity of polyethy- lene (PE) films, and all the modification processes were carried out by employing an atmospheric pressure plasma jet (APPJ) system. (a) PE films were directly modified by APPJ using a gas mixture of He and 02. (b) Acrylic acid (AA) was introduced into the system and a polymer acrylic acid (PAA) coating was deposited onto the PE films. (c) AA was grafted onto the PE surface activated by plasma pre-treatment. It was found that the hydrophilicity of the PE films was significantly improved for all the three methods. However, the samples modified by Process (a) showed hydrophobicity recovery after a storage time of 20 days while no significant change was found in samples modified by Process (b) and Process (c). The Fourier transform infrared spectroscopy (FTIR) results indicated that the most intensive C=O peak was detected on the PE surface modified by Process (c). According to the X-ray photoelectron spectroscopy (XPS) analysis, the ratios of oxygen-containing polar groups for samples modified by Process (b) and Process (c) were higher than that modified by Process (a).展开更多
An atmospheric-pressure air plasma is employed to treat C6 glioma cells in vitro. To elucidate on the mechanism causing cell death and role of reactive species (RS) in the medium produced by the plasma, the concentr...An atmospheric-pressure air plasma is employed to treat C6 glioma cells in vitro. To elucidate on the mechanism causing cell death and role of reactive species (RS) in the medium produced by the plasma, the concentration of the long-lived RS such as hydrogen peroxide, nitrate, and ozone in the plasma-treated liquid (phosphate-buffered saline solution) is measured. When vitamin C is added to the medium as a ROS quencher, the viability of C6 glioma cells after the plasma treatment is different from that without vitamin C. The results demonstrate that reactive oxygen species (ROS) such as H2O2, and O3 constitute the main factors for inactivation of C6 glioma cells and the reactive nitrogen species (RNS) may only play an auxiliary role in cell death.展开更多
An atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator using air flow as the feedstock gas was applied to decontaminate the chemical agent surrogates on the surface of aluminum, stainless st...An atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator using air flow as the feedstock gas was applied to decontaminate the chemical agent surrogates on the surface of aluminum, stainless steel or iron plate painted with alkyd or PVC. The experi- mental results of material decontamination show that the residual chemical agent on the material is lower than the permissible value of the National Military Standard of China. In order to test the corrosion effect of the plasma jet on different material surfaces in the decontamination pro-cess, corrosion tests for the materials of polymethyl methacrylate, neoprene, polyvinyl chloride (PVC), polyethylene (PE), phenolic resin, iron plate painted with alkyd, stainless steel, aluminum, etc. were carried out, and relevant parameters were examined, including etiolation index, chroma- tism, loss of gloss, corrosion form, etc. The results show that the plasma jet is slightly corrosive for part of the materials, but their performances are not affected. A portable calculator, computer display, mainboard, circuit board of radiogram, and a hygrometer could work normally after being treated by the plasma jet.展开更多
This paper reports that a new plasma generator at atmospheric pressure, which is composed of two homocentric cylindrical all-metal tubes, successfully generates a cold plasma jet. The inside tube electrode is connecte...This paper reports that a new plasma generator at atmospheric pressure, which is composed of two homocentric cylindrical all-metal tubes, successfully generates a cold plasma jet. The inside tube electrode is connected to ground, the outside tube electrode is connected to a high-voltage power supply, and a dielectric layer is covered on the outside tube electrode. When the reactor is operated by low-frequency (6 kHz-20 kHz) AC supply in atmospheric pressure and argon is steadily fed as a discharge gas through inside tube electrode, a cold plasma jet is blown out into air and the plasma gas temperature is only 25-30℃. The electric character of the discharge is studied by using digital real-time oscilloscope (TDS 200-Series), and the discharge is capacitive. Preliminary results are presented on the decontamination of E.colis bacteria and Bacillus subtilis bacteria by this plasma jet, and an optical emission analysis of the plasma jet is presented in this paper. The ozone concentration generated by the plasma jet is 1.0× 10^16cm^-3 which is acquired by using the ultraviolet absorption spectroscopy.展开更多
The Ar atmospheric pressure plasma was found to be an excellent laboratorial source for green aurora emission.However,the characteristic and production mechanism of the green aurora emission of the Ar atmospheric pres...The Ar atmospheric pressure plasma was found to be an excellent laboratorial source for green aurora emission.However,the characteristic and production mechanism of the green aurora emission of the Ar atmospheric pressure plasma are still not clear.In this work,an Ar plasma in a long glass tube which emits intense green aurora light is investigated.With the long glass tube,it can be concluded that the green aurora emission in the Ar plasma is not owing to the mixture of Ar plasma plume with the surrounding air.It is also found that the green aurora emission often appeared beyond the active electrode when the active electrode is placed at the downstream of the gas flow.The green emission disappears when the traces amount of O_(2) or N_(2)(about 0.05%–0.07%)is added to Ar.This is because the O_(2) molecules deactivate the upper state O(^(1)S),which results in the decrease of the green emission.On the other hand,when N_(2) is added,Ar metastable atoms are quenched by N_(2),which results in the decrease of O atoms and eventually leads to the decrease of the green emission intensity.The intensity of the green aurora emission increases when the driving voltage frequency increases from 1 to 10 k Hz.More importantly,it is found that the green aurora emission is not affected when a grounded stainless steel needle is in contact with the plasma plume.Thus,the green emission is not driven electrically.All these findings are helpful for the understanding of the physics and its applications of atmospheric pressure plasma jet in space physics,laser physics and other application areas.展开更多
A non-equilibrium atmospheric pressure argon(Ar)plasma excited by microsecond pulse is studied experimentally by laser scattering and optical emission spectroscopy(OES),and theoretically by collisional-radiative(CR)mo...A non-equilibrium atmospheric pressure argon(Ar)plasma excited by microsecond pulse is studied experimentally by laser scattering and optical emission spectroscopy(OES),and theoretically by collisional-radiative(CR)model.More specifically,the electron temperature and electron density of plasma are obtained directly by the laser Thomson scattering,the gas temperature is measured by laser Raman scattering,the optical emissions of excited Ar states of plasma are measured by OES.The laser scattering results show that the electron temperature is about 1 eV which is similar to that excited by 60 Hz AC power,but the gas temperature is as low as 300 K compared to about 700 K excited by 60 Hz AC power.It is shown that the microsecond pulsed power supply,rather than nanosecond ones,is short enough to reduce the gas temperature of atmospheric pressure plasma to near room temperature.The electron temperature and electron density are also obtained by CR model based on OES,and find that the intensities of the optical emission intensity lines of 727.41,811.73,841.08,842.83,852.44 and 912.86 nm of Ar can be used to characterize the behavior of electron density and electron temperature,it is very useful to quickly estimate the activity of the atmospheric pressure Ar plasma in many applications.展开更多
Atmospheric pressure helium/water dielectric barrier discharge(DBD) plasma is used to investigate the generation of reactive species in a gas–liquid interface and in a liquid. The emission intensity of the reactive...Atmospheric pressure helium/water dielectric barrier discharge(DBD) plasma is used to investigate the generation of reactive species in a gas–liquid interface and in a liquid. The emission intensity of the reactive species is measured by optical emission spectroscopy(OES)with different discharge powers at the gas–liquid interface. Spectrophotometry is used to analyze the reactive species induced by the plasma in the liquid. The concentration of OH radicals reaches 2.2 μm after 3 min of discharge treatment. In addition, the concentration of primary longlived reactive species such as H;O;, NO;and O;are measured based on plasma treatment time.After 5 min of discharge treatment, the concentration of H;O;, NO;, and O;increased from 0 mg?·?L;to 96 mg?·?L;, 19.5 mg?·?L;, and 3.5 mg?·?L;, respectively. The water treated by plasma still contained a considerable concentration of reactive species after 6 h of storage. The results will contribute to optimizing the DBD plasma system for biological decontamination.展开更多
This study investigates the influence of two types of target,skin tissue and cell culture medium,with different permittivities on a k Hz helium atmospheric pressure plasma jet(APPJ)during its application for wound hea...This study investigates the influence of two types of target,skin tissue and cell culture medium,with different permittivities on a k Hz helium atmospheric pressure plasma jet(APPJ)during its application for wound healing.The basic optical-electrical characteristics,the initiation and propagation and the emission spectra of the He APPJ under different working conditions are explored.The experimental results show that,compared with a jet freely expanding in air,the diameter and intensity of the plasma plume outside the nozzle increase when it interacts with the pigskin and cell culture medium targets,and the mean velocity of the plasma bullet from the tube nozzle to a distance of 15 mm is also significantly increased.There are also multiple increases in the relative intensity of OH(A^(2)Σ→X^(2)Π)and O(3p^(5)S-3s^(5)S)at a position 15 mm away from nozzle when the He APPJ interacts with cell culture medium compared with the air and pigskin targets.Taking the surface charging of the low permittivity material capacitance and the strengthened electric field intensity into account,they make the various characteristics of He APPJ interacting with two different targets together.展开更多
The stimulatory effects of atmospheric pressure cold plasma(APCP)on plant growth have attracted much attention due to its great potential as a new approach to increase crop growth and production.However,the transcript...The stimulatory effects of atmospheric pressure cold plasma(APCP)on plant growth have attracted much attention due to its great potential as a new approach to increase crop growth and production.However,the transcriptome changes of plants induced by APCP treatment are unknown.Herein,the comparative transcriptome analysis was performed to identify the transcriptional response of Arabidopsis thaliana seedlings to APCP.Results showed that APCP exhibited a dual effect(stimulation or inhibition)on Arabidopsis seedling growth dependent on the treatment time and the maximum stimulatory effects were achieved by 1 min APCP treatment.The metabolic analysis of amino acid,glutathione(GSH)and phytohormone demonstrated that 1 min APCP treatment decreased most amino acids concentrations in Arabidopsis seedling,while the accumulations of GSH,gibberellins and cytokinin were significantly increased.The RNA-Seq analysis showed that a total of218 differentially expressed genes(DEGs)were identified in 1 min APCP-treated seedlings versus the control,including 20 up-regulated and 198 down-regulated genes.The DEGs were enriched in pathways related to GSH metabolism,mitogen-activated protein kinase(MAPK)signaling transduction and plant resistance against pathogens.Moreover,most of the DEGs were defense,stimuli or stressresponsive genes and encoded proteins with oxidoreductase activity.Expression determination of six randomly selected DEGs by quantitative real-time PCR demonstrated similar pattern with the RNASeq data.These results indicated that the moderate APCP treatment may regulate the expression of stimuli/stress-responsive genes involved in GSH,phytohormone/amino metabolism and plant defense against pathogens via MAPK signal transduction pathway,accordingly enhance Arabidopsis seedling growth.This study provides a theoretical basis for the application of APCP in agriculture.展开更多
Atmospheric pressure plasma jet(APPJ)was used to clean nitrogen-containing carbon films(C–N)fabricated by plasma-assisted chemical vapor deposition method employing the plasma surface interaction linear device at Sic...Atmospheric pressure plasma jet(APPJ)was used to clean nitrogen-containing carbon films(C–N)fabricated by plasma-assisted chemical vapor deposition method employing the plasma surface interaction linear device at Sichuan University(SCU-PSI).The properties of the contaminated films on the surface of pristine and He-plasma pre-irradiated tungsten matrix,such as morphology,crystalline structure,element composition and chemical structure were characterized by scanning electron microscopy,grazing incidence x-ray diffraction and x-ray photoelectron spectroscopy.The experimental results revealed that the removal of C–N film with a thickness of tens of microns can be realized through APPJ cleaning regardless of the morphology of the substrates.Similar removal rates of 16.82 and 13.78μm min^(-1)were obtained for C–N films deposited on a smooth pristine W surface and rough fuzz-covered W surface,respectively.This is a remarkable improvement in comparison to the traditional cleaning method.However,slight surface oxidation was found after APPJ cleaning,but the degree of oxidation was acceptable with an oxidation depth increase of only 3.15 nm.Optical emission spectroscopy analysis and mass spectrometry analysis showed that C–N contamination was mainly removed through chemical reaction with reactive oxygen species during APPJ treatment using air as the working gas.These results make APPJ cleaning a potentially effective method for the rapid removal of C–N films from the wall surfaces of fusion devices.展开更多
Direct-current(DC)arc plasma has great application values in the field of the chemical industry,but it has the problem of low energy efficiency.Facing the requirement for improving the energy efficiency of the arc,thi...Direct-current(DC)arc plasma has great application values in the field of the chemical industry,but it has the problem of low energy efficiency.Facing the requirement for improving the energy efficiency of the arc,this paper proposes a unique method of pulsed modulated arc(PMA).This method uses high-frequency pulses and reduces the arc current to improve the control of electron temperature.The electrical characteristics,optical characteristics and products are tested.The test results show that during the PMA process,all of the experimental results which include voltage,current and light will significantly increase.These results are analyzed from the perspective of functionality,repeatability and energy conversion.The analysis results show that although the PMA method does not show good parameter consistency,it has potential application prospects because it increases the energy conversion rate by 4.5%and 8%from the perspective of light and products,respectively.展开更多
The intention of this work is to remove Reactive Blue 198(RB-198)dye components from simulated water solution using cold atmospheric pressure argon plasma jet.Aqueous solutions of RB-198 dye were treated as a function...The intention of this work is to remove Reactive Blue 198(RB-198)dye components from simulated water solution using cold atmospheric pressure argon plasma jet.Aqueous solutions of RB-198 dye were treated as a function of various operating parameters such as applied potential,reaction time and distance between the plasma jet and surface of the liquid.The efficiency of the degradation of RB-198 molecules was explored by means of UV-Vis spectroscopy.The reactive species involved during the treatment process were examined by optical emission spectra(OES).The present hydroxyl radicals(OH·radical)and hydrogen peroxide(H2O2)in the plasma-treated aqueous dye solutions were investigated using various spectroscopic techniques.The other parameters such as total organic carbon(TOC),conductivity and p H were also reviewed.The toxicity of plasma-treated RB-198 solution was finally studied by diffusion bacterial analysis and by tracking seed germination processes.The results show that a higher degradation percentage of99.27%was acquired for the RB-198 treated at higher reaction time and applied potential,and shorter distance between the plasma jet and water surface.This may be due to the formation of various reactive oxygen(OH·radical,atomic oxygen(O)and H2O2)and nitrogen species(nitric oxide(NO)radicals and N2 second positive system(N2 SPS))during the processes as confirmed by OES analysis and other spectroscopy analysis.TOC(17.7%-81.8%)and pH(7.5-3.4)values of the plasma-treated RB-198 decreased significantly with respect to various operation parameters,which indicates the decomposition of RB-198 molecules in the aqueous solution.Moreover,the conductivity of plasma-treated RB-198 aqueous solutions was found to have increased linearly during the plasma treatment due to the formation of various ionic species in aqueous solution.The toxicity analysis clearly exhibits the non-toxic behavior of plasma-treated RB-198 aqueous solution towards the bacterial growth and germination of seeds.展开更多
基金supported by 173 Program of China,and National Natural Science Foundation of China(No.92271116).
文摘In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the blade electrodes.A range of experimental parameters,including the inter-electrode spacing,gas flow rate,applied voltage,and the type of the powder,were systematically varied to elucidate the influence of solid powder matter on the dynamics of gliding arc discharge(GAD).The discharge images were captured by ICCD and digital camera to investigate the mass transfer characteristics of GS-GAD,and the electrical parameters,such as the effective values of voltage,current,and discharge power were record to reveal the discharge characteristics of GS-GAD.The results demonstrate that powder undergoes spontaneous movement towards the upper region of the gliding arc due to the influence of electric field force.Increasing the discharge voltage,decreasing relative dielectric constant of the powder and reducing the electrode-to-sieve-plate distance all contribute to a greater involvement of powder in the GAD process,subsequently resulting in an enhanced powder concentration within the GAD region.Additionally,powder located beneath the gliding arc experiences downward resistance caused by the opposing gas flow and arc.Excessive gas flow rate notably hampers the powder concentration within the discharge region,and the velocity of powder motion in the upper part of the GAD region is reduced.Under the condition of electrode-to-sieve-plate distance of 30 mm,gas flow rate of 1.5 L/min,and peak-to-peak voltage of 31 kV,the best combination of arc gliding and powder spark discharge phenomena can be achieved with the addition of Al_(2)O_(3) powder.
基金supported by the Fundamental Research Funds of Shandong University,China(No.2016JC016)
文摘In this work the effects of O_2 concentration on the pulsed dielectric barrier discharge in helium-oxygen mixture at atmospheric pressure have been numerically researched by using a one-dimensional fluid model in conjunction with the chosen key species and chemical reactions.The reliability of the used model has been examined by comparing the calculated discharge current with the reported experiments. The present work presents the following significant results. The dominative positive and negative particles are He_2~+ and O_2^-, respectively, the densities of the reactive oxygen species(ROS) get their maxima nearly at the central position of the gap, and the density of the ground state O is highest in the ROS. The increase of O_2 concentration results in increasingly weak discharge and the time lag of the ignition. For O_2 concentrations below 1.1%,the density of O is much higher than other species, the averaged dissipated power density presents an evident increase for small O_2 concentration and then the increase becomes weak. In particular,the total density of the reactive oxygen species reaches its maximums at the O_2 concentration of about 0.5%. This characteristic further convinces the experimental observation that the O_2 concentration of 0.5% is an optimal O_2/He ratio in the inactivation of bacteria and biomolecules when radiated by using the plasmas produced in a helium oxygen mixture.
基金supported by National Natural Science Foundation of China(Nos.51077008 and 11247239)
文摘An atmospheric pressure plasma jet generated in Ar and O2/Ar mixtures has been investigated by specially designed equipment with double power electrodes at 20~32 kHz, and their effects on the cleaning of surfaces have been studied. Properties of the jet discharge are studied by electrical diagnostics, including the waveform of discharge voltage, discharge current and the Q-V Lissajous figures. The optical emission spectroscopy is used to measure the plasma parameters, such as the excitation temperature and the gas temperature. It is found that the consumed power and the excitation temperature increase with increase of the discharge frequency. On the other hand, at the same discharge frequency, these parameters in O2/Ar mixture plasma are found to be much larger. The effect on surface cleaning is studied from the changes in the contact angle. For Ar plasma jet, the contact angle decreases with increase of the discharge frequency. For O2/Ar mixture plasma jet, the contact angle decreases with increase of discharge frequency up to 26 kHz, however, further increase of discharge frequency does not show further decrease in the contact angle. At the same discharge frequency, the contact angle after O2/Ar mixture plasma cleaning is found to be much lower compared to the case of pure Ar. From the results of quadrupole mass-spectrum analysis, we can identify more fragment molecules of CO and H2O in the emitted gases after O2/Ar plasma jet treatment compared with Ar plasma jet treatment, which are produced by the decomposition of surface organic contaminants during the cleaning process.
基金supported by National Natural Science Foundation of China(No.11175037)National Natural Science Foundation for Young Scientists of China(No.11305017)Special Fund for Theoretical Physics(No.11247239)
文摘The surface dielectric barrier discharge (SDBD) plasma actuator has shown great promise as an aerodynamic flow control device. In this paper, the encapsulated electrode width of a SDBD actuator is changed to study the airflow acceleration behavior. The effects of encapsulated electrode width on the actuator performance are experimentally investigated by measuring the dielectric layer surface potential, time-averaged ionic wind velocity and thrust force. Experimental results show that the airflow velocity and thrust force increase with the encapsulated electrode width. The results can be attributed to the distinct plasma distribution at different encapsulated electrode widths.
基金supported by grants from National Natural Science Foundation of China(Nos.81701014,81801310,31700076)the Basic Research of Natural Science Project funded by the Department of Science and Technology of Shaanxi Province(No.2017JM8038)the Science and Technology Project funded by the Science and Technology Bureau of Weiyang District,Xi’an city(No.201846)。
文摘In this study, we employed a nonthermal atmospheric pressure plasma(NTAPP) jet to evaluate the effect of plasma treatment on the durability of resin–dentin bonding under a thermocycling challenge. Furthermore, we assessed the degradation resistance of plasma-treated collagen under a sodium hypochlorite(NaClO) challenge. We assessed the beneficial effect of NTAPP treatment on the acid-etched dentin–bonding interface by testing the micro-tensile bond strength and examining the morphology. We found that the immediate bonding strength of the dentin significantly increased after NTAPP treatment. Compared with the control group, NTAPP resulted in a more prominent effect on the bonding durability of the dentin–adhesive interface after treatment for 5 or 10 s. Simultaneously, the mechanical strength of dentin collagen under the NaClO challenge was improved. Our results indicate that, in optimal conditions, NTAPP could be a promising method to protect dentin collagen and to improve the bonding durability between dentin and etch-and-rinse adhesives.
基金Partial financial support has been provided by the Ministry of Science and Technology, Republic of Bangladesh: 39.00.0000.09.06.79.2017/2/98ESBangladesh Council for Scientific and Industrial Research (BCSIR) for providing Professor Abdullah Al-Muti Sharfuddin fellowship
文摘Wheat (Triticum aestivum) seeds were treated with atmospheric pressure gliding arc discharge plasmas to investigate the effects on water absorption, seed germination rate, seedling growth and yield in wheat. The surface architectures and functionalities of the seeds were found to modify due to plasma treatments. 6 rain treatment was provided 95%-100% germination rate. For the treatment duration of 3 and 9 rain the growth activity, dry matter accumulation, leaves chlorophyll contents, longest spikes, number of spikes/spikelet and total soluble protein content in shoots were improved. The grain yield of wheat was increased ,--20% by 6 min treatment with H2O/O2 plasma with respect to control.
基金supported by National Natural Science Foundation of China (No. 10875048)
文摘Enterococcus faecalis (E. faecalis) is a microorganism that can survive extreme challenges in obturated root canals. The aim of this study was to evaluate the efficacy of a non-thermal atmospheric pressure plasma plume against E. faecalis in vitro. A non-thermal atmospheric pressure plasma jet device which could generate a cold plasma plume carrying a peak current of 300 mA was used. The antibacterial efficacy of this device against E. faecalis and its biofihn un- der different conditions was detected. The antibacterial efficacy of the plasma against E. faecalis and Staphylococcus aureus (S. aureus) was also evaluated. After plasma treatment, the average diameter of inhibition zone on S. aureus and E. faecalis was 2.62±0.26 cm and 1.06±0.30 cm, respectively (P 〈 0.05). The diameter was increased with prolongation of the treatment dura- tion. The diameters of inhibition zone of the sealed Petri dishes were larger than those of the uncovered Petri dishes. There was significant difference in colony-forming units between plasma group and control group on E. faecalis biofilm (P 〈 0.01). The transmission electron microscopy revealed that the ultrastructural changes eytoderm of E. faecalis were observed after treatment for 2min. It is concluded that the non-thermal atmospheric pressure plasma could serve as an effective adjunct to standard endodontie microbial treatment.
基金financially supported by National Natural Science Foundation of China (Grant Nos. 51777206, 51807046 and 51877208)the Natural Science Foundation of Anhui Province (Grant Nos. 1908085MA29 and 1808085MA13)。
文摘Atmospheric pressure cold plasma, with advantages such as high particle activity, no thermal damage, high efficiency and direct and friendly contact with human tissues, is considered to have great potential in biomedical applications. Therefore, 'plasma medicine' as a new interdiscipline has been developed in the past two decades. This review first briefly describes the development of typical plasma sources suitable for biomedical applications, and those with different discharge forms are simply compared, evaluated and summarized. Subsequently, measurement of the crucial gaseous reactive particles(e.g. OH and O) and their spatio-temporal distributions are introduced. Meanwhile, the generation and variation rules and the related critical macroscopic parameters of the plasma-induced aqueous reactive species are summarized. Finally, related studies in the last ten years on the mechanisms of the plasma-driven microbial inactivation and plasma-induced apoptosis of cancer cells are introduced. Moreover, some scientific problems that need to be urgently solved in the field of plasma medicine are also discussed. This review will provide useful guidance for future related research.
基金Project supported by the National Natural Science Foundation of China(Grant No.11175157)the Zhejiang Provincial Key Innovation Team,China(Grant No.2012R10038)the 521 Talent Project of Zhejiang Sci-Tech University,China
文摘Three different low-temperature plasma-based methods were used to improve the surface hydrophilicity of polyethy- lene (PE) films, and all the modification processes were carried out by employing an atmospheric pressure plasma jet (APPJ) system. (a) PE films were directly modified by APPJ using a gas mixture of He and 02. (b) Acrylic acid (AA) was introduced into the system and a polymer acrylic acid (PAA) coating was deposited onto the PE films. (c) AA was grafted onto the PE surface activated by plasma pre-treatment. It was found that the hydrophilicity of the PE films was significantly improved for all the three methods. However, the samples modified by Process (a) showed hydrophobicity recovery after a storage time of 20 days while no significant change was found in samples modified by Process (b) and Process (c). The Fourier transform infrared spectroscopy (FTIR) results indicated that the most intensive C=O peak was detected on the PE surface modified by Process (c). According to the X-ray photoelectron spectroscopy (XPS) analysis, the ratios of oxygen-containing polar groups for samples modified by Process (b) and Process (c) were higher than that modified by Process (a).
基金jointly supported by the Education and Research Foundation of Anhui Province(KJ2015A327)Science Foundation of Institute of Plasma Physics,Chinese Academy of Sciences No.DSJJ-14-YY02Hong Kong Research Grants Council(RGC)General Research Funds(GRF)No.CityU 11301215
文摘An atmospheric-pressure air plasma is employed to treat C6 glioma cells in vitro. To elucidate on the mechanism causing cell death and role of reactive species (RS) in the medium produced by the plasma, the concentration of the long-lived RS such as hydrogen peroxide, nitrate, and ozone in the plasma-treated liquid (phosphate-buffered saline solution) is measured. When vitamin C is added to the medium as a ROS quencher, the viability of C6 glioma cells after the plasma treatment is different from that without vitamin C. The results demonstrate that reactive oxygen species (ROS) such as H2O2, and O3 constitute the main factors for inactivation of C6 glioma cells and the reactive nitrogen species (RNS) may only play an auxiliary role in cell death.
文摘An atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator using air flow as the feedstock gas was applied to decontaminate the chemical agent surrogates on the surface of aluminum, stainless steel or iron plate painted with alkyd or PVC. The experi- mental results of material decontamination show that the residual chemical agent on the material is lower than the permissible value of the National Military Standard of China. In order to test the corrosion effect of the plasma jet on different material surfaces in the decontamination pro-cess, corrosion tests for the materials of polymethyl methacrylate, neoprene, polyvinyl chloride (PVC), polyethylene (PE), phenolic resin, iron plate painted with alkyd, stainless steel, aluminum, etc. were carried out, and relevant parameters were examined, including etiolation index, chroma- tism, loss of gloss, corrosion form, etc. The results show that the plasma jet is slightly corrosive for part of the materials, but their performances are not affected. A portable calculator, computer display, mainboard, circuit board of radiogram, and a hygrometer could work normally after being treated by the plasma jet.
文摘This paper reports that a new plasma generator at atmospheric pressure, which is composed of two homocentric cylindrical all-metal tubes, successfully generates a cold plasma jet. The inside tube electrode is connected to ground, the outside tube electrode is connected to a high-voltage power supply, and a dielectric layer is covered on the outside tube electrode. When the reactor is operated by low-frequency (6 kHz-20 kHz) AC supply in atmospheric pressure and argon is steadily fed as a discharge gas through inside tube electrode, a cold plasma jet is blown out into air and the plasma gas temperature is only 25-30℃. The electric character of the discharge is studied by using digital real-time oscilloscope (TDS 200-Series), and the discharge is capacitive. Preliminary results are presented on the decontamination of E.colis bacteria and Bacillus subtilis bacteria by this plasma jet, and an optical emission analysis of the plasma jet is presented in this paper. The ozone concentration generated by the plasma jet is 1.0× 10^16cm^-3 which is acquired by using the ultraviolet absorption spectroscopy.
基金supported by the National Key Research and Development Program of China(No.2021YFE0114700)National Natural Science Foundation of China(Nos.52130701 and 51977096)。
文摘The Ar atmospheric pressure plasma was found to be an excellent laboratorial source for green aurora emission.However,the characteristic and production mechanism of the green aurora emission of the Ar atmospheric pressure plasma are still not clear.In this work,an Ar plasma in a long glass tube which emits intense green aurora light is investigated.With the long glass tube,it can be concluded that the green aurora emission in the Ar plasma is not owing to the mixture of Ar plasma plume with the surrounding air.It is also found that the green aurora emission often appeared beyond the active electrode when the active electrode is placed at the downstream of the gas flow.The green emission disappears when the traces amount of O_(2) or N_(2)(about 0.05%–0.07%)is added to Ar.This is because the O_(2) molecules deactivate the upper state O(^(1)S),which results in the decrease of the green emission.On the other hand,when N_(2) is added,Ar metastable atoms are quenched by N_(2),which results in the decrease of O atoms and eventually leads to the decrease of the green emission intensity.The intensity of the green aurora emission increases when the driving voltage frequency increases from 1 to 10 k Hz.More importantly,it is found that the green aurora emission is not affected when a grounded stainless steel needle is in contact with the plasma plume.Thus,the green emission is not driven electrically.All these findings are helpful for the understanding of the physics and its applications of atmospheric pressure plasma jet in space physics,laser physics and other application areas.
基金supported by the National Key Research and Development Program of China(Nos.2017YFA0402300,2017YFA0304900 and 2016YFA0300600)National Natural Science Foundation of China(Nos.11604334,11575099,11474347 and 11874051)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Nos.XDB28000000and XDB07030000)the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics(KF201807)。
文摘A non-equilibrium atmospheric pressure argon(Ar)plasma excited by microsecond pulse is studied experimentally by laser scattering and optical emission spectroscopy(OES),and theoretically by collisional-radiative(CR)model.More specifically,the electron temperature and electron density of plasma are obtained directly by the laser Thomson scattering,the gas temperature is measured by laser Raman scattering,the optical emissions of excited Ar states of plasma are measured by OES.The laser scattering results show that the electron temperature is about 1 eV which is similar to that excited by 60 Hz AC power,but the gas temperature is as low as 300 K compared to about 700 K excited by 60 Hz AC power.It is shown that the microsecond pulsed power supply,rather than nanosecond ones,is short enough to reduce the gas temperature of atmospheric pressure plasma to near room temperature.The electron temperature and electron density are also obtained by CR model based on OES,and find that the intensities of the optical emission intensity lines of 727.41,811.73,841.08,842.83,852.44 and 912.86 nm of Ar can be used to characterize the behavior of electron density and electron temperature,it is very useful to quickly estimate the activity of the atmospheric pressure Ar plasma in many applications.
基金jointly supported by the Science Foundation of the Institute of Plasma Physics, the Chinese Academy of Sciences (No. DSJJ-14-YY02)National Natural Science Foundation of China (Grant Nos. 11475174 and 51777206)
文摘Atmospheric pressure helium/water dielectric barrier discharge(DBD) plasma is used to investigate the generation of reactive species in a gas–liquid interface and in a liquid. The emission intensity of the reactive species is measured by optical emission spectroscopy(OES)with different discharge powers at the gas–liquid interface. Spectrophotometry is used to analyze the reactive species induced by the plasma in the liquid. The concentration of OH radicals reaches 2.2 μm after 3 min of discharge treatment. In addition, the concentration of primary longlived reactive species such as H;O;, NO;and O;are measured based on plasma treatment time.After 5 min of discharge treatment, the concentration of H;O;, NO;, and O;increased from 0 mg?·?L;to 96 mg?·?L;, 19.5 mg?·?L;, and 3.5 mg?·?L;, respectively. The water treated by plasma still contained a considerable concentration of reactive species after 6 h of storage. The results will contribute to optimizing the DBD plasma system for biological decontamination.
基金supported in part by the Scientific Innovation Practice Project of Postgraduates of Chang’an University(No.300103714007)the Fundamental Research Funds for the Central Universities(No.300102329301)National Natural Science Foundation of China(No.51677146)。
文摘This study investigates the influence of two types of target,skin tissue and cell culture medium,with different permittivities on a k Hz helium atmospheric pressure plasma jet(APPJ)during its application for wound healing.The basic optical-electrical characteristics,the initiation and propagation and the emission spectra of the He APPJ under different working conditions are explored.The experimental results show that,compared with a jet freely expanding in air,the diameter and intensity of the plasma plume outside the nozzle increase when it interacts with the pigskin and cell culture medium targets,and the mean velocity of the plasma bullet from the tube nozzle to a distance of 15 mm is also significantly increased.There are also multiple increases in the relative intensity of OH(A^(2)Σ→X^(2)Π)and O(3p^(5)S-3s^(5)S)at a position 15 mm away from nozzle when the He APPJ interacts with cell culture medium compared with the air and pigskin targets.Taking the surface charging of the low permittivity material capacitance and the strengthened electric field intensity into account,they make the various characteristics of He APPJ interacting with two different targets together.
基金supported by National Natural Science Foundation of China(Nos.11605159,11405147)Chinese Postdoctoral Science Foundation(No.2017M612412)+2 种基金the Foundation of Key Technology Research Project of Henan Province(No.182102311115)Key Discipline Construction Project of Zhengzhou University(No.32410257)Youth Innovation Project of Key Discipline of Zhengzhou University(No.XKZDQN202002)。
文摘The stimulatory effects of atmospheric pressure cold plasma(APCP)on plant growth have attracted much attention due to its great potential as a new approach to increase crop growth and production.However,the transcriptome changes of plants induced by APCP treatment are unknown.Herein,the comparative transcriptome analysis was performed to identify the transcriptional response of Arabidopsis thaliana seedlings to APCP.Results showed that APCP exhibited a dual effect(stimulation or inhibition)on Arabidopsis seedling growth dependent on the treatment time and the maximum stimulatory effects were achieved by 1 min APCP treatment.The metabolic analysis of amino acid,glutathione(GSH)and phytohormone demonstrated that 1 min APCP treatment decreased most amino acids concentrations in Arabidopsis seedling,while the accumulations of GSH,gibberellins and cytokinin were significantly increased.The RNA-Seq analysis showed that a total of218 differentially expressed genes(DEGs)were identified in 1 min APCP-treated seedlings versus the control,including 20 up-regulated and 198 down-regulated genes.The DEGs were enriched in pathways related to GSH metabolism,mitogen-activated protein kinase(MAPK)signaling transduction and plant resistance against pathogens.Moreover,most of the DEGs were defense,stimuli or stressresponsive genes and encoded proteins with oxidoreductase activity.Expression determination of six randomly selected DEGs by quantitative real-time PCR demonstrated similar pattern with the RNASeq data.These results indicated that the moderate APCP treatment may regulate the expression of stimuli/stress-responsive genes involved in GSH,phytohormone/amino metabolism and plant defense against pathogens via MAPK signal transduction pathway,accordingly enhance Arabidopsis seedling growth.This study provides a theoretical basis for the application of APCP in agriculture.
基金funded by National Key Research, Development Program of China (No. 2017YFE0301305KYWX-002)Sichuan Science and Technology Program (No. 2021YFSY0015)
文摘Atmospheric pressure plasma jet(APPJ)was used to clean nitrogen-containing carbon films(C–N)fabricated by plasma-assisted chemical vapor deposition method employing the plasma surface interaction linear device at Sichuan University(SCU-PSI).The properties of the contaminated films on the surface of pristine and He-plasma pre-irradiated tungsten matrix,such as morphology,crystalline structure,element composition and chemical structure were characterized by scanning electron microscopy,grazing incidence x-ray diffraction and x-ray photoelectron spectroscopy.The experimental results revealed that the removal of C–N film with a thickness of tens of microns can be realized through APPJ cleaning regardless of the morphology of the substrates.Similar removal rates of 16.82 and 13.78μm min^(-1)were obtained for C–N films deposited on a smooth pristine W surface and rough fuzz-covered W surface,respectively.This is a remarkable improvement in comparison to the traditional cleaning method.However,slight surface oxidation was found after APPJ cleaning,but the degree of oxidation was acceptable with an oxidation depth increase of only 3.15 nm.Optical emission spectroscopy analysis and mass spectrometry analysis showed that C–N contamination was mainly removed through chemical reaction with reactive oxygen species during APPJ treatment using air as the working gas.These results make APPJ cleaning a potentially effective method for the rapid removal of C–N films from the wall surfaces of fusion devices.
基金supported by National Natural Science Foundation of China(No.52177135)the National Science and Technology Major Project of China(Nos.2017-Ⅲ-0007-0032,2019-Ⅲ-0013-0056)。
文摘Direct-current(DC)arc plasma has great application values in the field of the chemical industry,but it has the problem of low energy efficiency.Facing the requirement for improving the energy efficiency of the arc,this paper proposes a unique method of pulsed modulated arc(PMA).This method uses high-frequency pulses and reduces the arc current to improve the control of electron temperature.The electrical characteristics,optical characteristics and products are tested.The test results show that during the PMA process,all of the experimental results which include voltage,current and light will significantly increase.These results are analyzed from the perspective of functionality,repeatability and energy conversion.The analysis results show that although the PMA method does not show good parameter consistency,it has potential application prospects because it increases the energy conversion rate by 4.5%and 8%from the perspective of light and products,respectively.
基金DST-SERB,Government of India for providing the financial support(EMR/2016/006812Dated 02-Nov-2017)The Management,Sri Ramakrishna Engineering College,Coimbatore,India and Government of India—DST INSPIRE Project 04/2013/000209。
文摘The intention of this work is to remove Reactive Blue 198(RB-198)dye components from simulated water solution using cold atmospheric pressure argon plasma jet.Aqueous solutions of RB-198 dye were treated as a function of various operating parameters such as applied potential,reaction time and distance between the plasma jet and surface of the liquid.The efficiency of the degradation of RB-198 molecules was explored by means of UV-Vis spectroscopy.The reactive species involved during the treatment process were examined by optical emission spectra(OES).The present hydroxyl radicals(OH·radical)and hydrogen peroxide(H2O2)in the plasma-treated aqueous dye solutions were investigated using various spectroscopic techniques.The other parameters such as total organic carbon(TOC),conductivity and p H were also reviewed.The toxicity of plasma-treated RB-198 solution was finally studied by diffusion bacterial analysis and by tracking seed germination processes.The results show that a higher degradation percentage of99.27%was acquired for the RB-198 treated at higher reaction time and applied potential,and shorter distance between the plasma jet and water surface.This may be due to the formation of various reactive oxygen(OH·radical,atomic oxygen(O)and H2O2)and nitrogen species(nitric oxide(NO)radicals and N2 second positive system(N2 SPS))during the processes as confirmed by OES analysis and other spectroscopy analysis.TOC(17.7%-81.8%)and pH(7.5-3.4)values of the plasma-treated RB-198 decreased significantly with respect to various operation parameters,which indicates the decomposition of RB-198 molecules in the aqueous solution.Moreover,the conductivity of plasma-treated RB-198 aqueous solutions was found to have increased linearly during the plasma treatment due to the formation of various ionic species in aqueous solution.The toxicity analysis clearly exhibits the non-toxic behavior of plasma-treated RB-198 aqueous solution towards the bacterial growth and germination of seeds.