This study compares the summer atmospheric water cycle,including moisture sources and consumption,in the upstream,midstream,and downstream regions of the Yarlung Zangbo River Basin in the southern Tibetan Plateau.The ...This study compares the summer atmospheric water cycle,including moisture sources and consumption,in the upstream,midstream,and downstream regions of the Yarlung Zangbo River Basin in the southern Tibetan Plateau.The evolutions of moisture properties under the influence of the westerly and summer southerly monsoon are examined using 5-yr multi-source measurements and ERA5 reanalysis data.Note that moisture consumption in this study is associated with clouds,precipitation,and diabatic heating.Compared to the midstream and downstream regions,the upstream region has less moisture,clouds,and precipitation,where the moisture is brought by the westerly.In early August,the vertical wet advection over this region becomes enhanced and generates more high clouds and precipitation.The midstream region has moisture carried by the westerly in June and by the southerly monsoon from July to August.The higher vertical wet advection maximum here forms more high clouds,with a precipitation peak in early July.The downstream region is mainly affected by the southerly-driven wet advection.The rich moisture and strong vertical wet advection here produce the most clouds and precipitation among the three regions,with a precipitation peak in late June.The height of the maximum moisture condensation is different between the midstream region(325 hPa)and the other two regions(375 hPa),due to the higher upward motion maximum in the midstream region.The diabatic heating structures show that stratiform clouds dominate the upstream region,stratiform clouds and deep convection co-exist in the midstream region,and deep convection systems characterize the downstream region.展开更多
Huaihe River Basin(HRB) is located in China’s north-south climatic transition zone,which is very sensitive to global climate change.Based on the daily maximum temperature,minimum temperature,and precipitation data of...Huaihe River Basin(HRB) is located in China’s north-south climatic transition zone,which is very sensitive to global climate change.Based on the daily maximum temperature,minimum temperature,and precipitation data of 40 meteorological stations and nine monthly large-scale ocean-atmospheric circulation indices data during 1959–2019,we present an assessment of the spatial and temporal variations of extreme temperature and precipitation events in the HRB using nine extreme climate indices,and analyze the teleconnection relationship between extreme climate indices and large-scale ocean-atmospheric circulation indices.The results show that warm extreme indices show a significant(P < 0.05) increasing trend,while cold extreme indices(except for cold spell duration) and diurnal temperature range(DTR) show a significant decreasing trend.Furthermore,all extreme temperature indices show significant mutations during 1959-2019.Spatially,a stronger warming trend occurs in eastern HRB than western HRB,while maximum 5-d precipitation(Rx5day) and rainstorm days(R25) show an increasing trend in the southern,central,and northwestern regions of HRB.Arctic oscillation(AO),Atlantic multidecadal oscillation(AMO),and East Atlantic/Western Russia(EA/WR) have a stronger correlation with extreme climate indices compared to other circulation indices.AO and AMO(EA/WR) exhibit a significant(P < 0.05) negative(positive)correlation with frost days and diurnal temperature range.Extreme warm events are strongly correlated with the variability of AMO and EA/WR in most parts of HRB,while extreme cold events are closely related to the variability of AO and AMO in eastern HRB.In contrast,AMO,AO,and EA/WR show limited impacts on extreme precipitation events in most parts of HRB.展开更多
The wide valley of the Yarlung Zangbo River is one of the most intense areas in terms of aeolian activity on the Tibetan Plateau,China.In the past,the evaluation of the intensity of aeolian activity in the Quxu–Sangr...The wide valley of the Yarlung Zangbo River is one of the most intense areas in terms of aeolian activity on the Tibetan Plateau,China.In the past,the evaluation of the intensity of aeolian activity in the Quxu–Sangri section of the Yarlung Zangbo River Valley was mainly based on data from the old meteorological stations,especially in non-sandy areas.In 2020,six new meteorological stations,which are closest to the new meteorological stations,were built in the wind erosion source regions(i.e.,sandy areas)in the Quxu–Sangri section.In this study,based on mathematical statistics and empirical orthogonal function(EOF)decomposition analysis,we compared the difference of the wind regime between new meteorological stations and old meteorological stations from December 2020 to November 2021,and discussed the reasons for the discrepancy.The results showed that sandy and non-sandy areas differed significantly regarding the mean velocity(8.3(±0.3)versus 7.7(±0.3)m/s,respectively),frequency(12.9%(±6.2%)versus 2.9%(±1.9%),respectively),and dominant direction(nearly east or west versus nearly north or south,respectively)of sand-driving winds,drift potential(168.1(±77.3)versus 24.0(±17.9)VU(where VU is the vector unit),respectively),resultant drift potential(92.3(±78.5)versus 8.7(±9.2)VU,respectively),and resultant drift direction(nearly westward or eastward versus nearly southward or northward,respectively).This indicated an obvious spatial variation in the wind regime between sandy and non-sandy areas and suggested that there exist problems when using wind velocity data from non-sandy areas to evaluate the wind regime in sandy areas.The wind regime between sandy and non-sandy areas differed due to the differences in topography,heat flows,and their coupling with underlying surface,thereby affecting the local atmospheric circulation.Affected by large-scale circulations(westerly jet and Indian monsoon systems),both sandy and non-sandy areas showed similar seasonal variations in their respective wind regime.These findings provide a credible reference for re-understanding the wind regime and scientific wind-sand control in the middle reaches of the Yarlung Zangbo River Valley.展开更多
Haze pollution in early winter(December and January) in the Yangtze River Delta(YRD) and in North China(NC)are both severe;however, their monthly variations are significantly different. In this study, the dominant lar...Haze pollution in early winter(December and January) in the Yangtze River Delta(YRD) and in North China(NC)are both severe;however, their monthly variations are significantly different. In this study, the dominant large-scale atmospheric circulations and local meteorological conditions were investigated and compared over the YRD and NC in each month. Results showed that the YRD(NC) is dominated by the so-called Scandinavia(East Atlantic/West Russia)pattern in December, and these circulations weaken in January. The East Asian December and January monsoons over the YRD and NC have negative correlations with the number of haze days. The local descending motion facilitates less removal of haze pollution over the YRD, while the local ascending motion facilitates less removal of haze pollution over NC in January, despite a weaker relationship in December. Additionally, the monthly variations of atmospheric circulations showed that adverse meteorological conditions restrict the vertical(horizontal) dispersion of haze pollution in December(January) over the YRD, while the associated local weather conditions are similar in these two months over NC.展开更多
Atmospheric Rivers(ARs) are narrow and elongated water vapor belts in troposphere with meridional transport across the mid-latitudes towards high-latitudes. Compared with ARs occurred over the northeastern Pacific, th...Atmospheric Rivers(ARs) are narrow and elongated water vapor belts in troposphere with meridional transport across the mid-latitudes towards high-latitudes. Compared with ARs occurred over the northeastern Pacific, the western coast of North America and Europe, the ARs over the East Asia have received less attention. In this paper, the characteristics of ARs which affected China in the area 20?–60?N, 95?–165?E in the middle summer season from 2001 to 2016 were investigated by using European Center for Medium-Range Weather Forecasts(ECMWF) ERA-Interim reanalysis data and Multi-functional Transport Satellites-1 R(MTSAT-1 R) infrared data. Totally, 134 ARs occurred during that period, and averagely 8.4 ARs occurred per year. Statistically, 101 ARs were in east-west orientation, and 33 ARs were in north-south orientation, which accounts for about 75% and 25%, respectively. Herein we report the occurrence number, duration time, intensity, length, width, ratio of length to width, and extension orientation of these ARs, which provide the basic information for those who have interest in ARs over the East Asia.展开更多
Arctic sea ice has undergone a significant decline in the Barents-Kara Sea(BKS)since the late 1990s.Previous studies have shown that the decrease in sea ice caused by increased poleward moisture transport is modulated...Arctic sea ice has undergone a significant decline in the Barents-Kara Sea(BKS)since the late 1990s.Previous studies have shown that the decrease in sea ice caused by increased poleward moisture transport is modulated by tropical sea temperature changes(mainly referring to La Niña events).The occurrence of multi-year La Niña(MYLA)events has increased significantly in recent decades,and their impact on Arctic sea ice needs to be further explored.In this study,we investigate the relationship between sea-ice variation and different atmospheric diagnostics during MYLA and other La Niña(OTLA)years.The decline in BKS sea ice during MYLA winters is significantly stronger than that during OTLA years.This is because MYLA events tend to be accompanied by a warm Arctic-cold continent pattern with a barotropic high pressure blocked over the Urals region.Consequently,more frequent northward atmospheric rivers intrude into the BKS,intensifying longwave radiation downward to the underlying surface and melting the BKS sea ice.However,in the early winter of OTLA years,a negative North Atlantic Oscillation presents in the high latitudes of the Northern Hemisphere,which obstructs the atmospheric rivers to the south of Iceland.We infer that such a different response of BKS sea-ice decline to different La Niña events is related to stratospheric processes.Considering the rapid climate changes in the past,more frequent MYLA events may account for the substantial Arctic sea-ice loss in recent decades.展开更多
<div style="text-align:justify;"> There are 158 sampling points to be set up in the Pearl River delta economic region. The collecting period is mostly one year, namely, from July 2007 to July 2008. The...<div style="text-align:justify;"> There are 158 sampling points to be set up in the Pearl River delta economic region. The collecting period is mostly one year, namely, from July 2007 to July 2008. The eight heavy metal elements of Cr, Ni, Cu, Pb, Zn, As, Hg, and Cd in 474 dry and wet deposition samples were tested in terms of the standard procedures. Their average annual fluxes have no obvious difference between dry deposition and wet deposition. So these elements might be at an equilibrium or quasi-equilibrium state between dry deposition and wet deposition. </div>展开更多
By using the meteorological data in the pollution boundary layer which was observed in two ground observation sites:coast and land in the river outlet area of Grand Liao River during January-February in 2007,the daily...By using the meteorological data in the pollution boundary layer which was observed in two ground observation sites:coast and land in the river outlet area of Grand Liao River during January-February in 2007,the daily change characteristics of pollute boundary layer in winter in the area were discussed. The results showed that the pollute boundary layer in the river outlet area of Grand Liao River was affected by the sea and land. In the certain weather condition,maybe the sea-land breeze appeared in the low altitude which was below 200 m in the coastal zone. The stability change in the different height in the coastal zone was more stable than in the land zone,and the wind field change in the area was mainly in 300 m low altitude. At night,the temperature inversion often appears in the area,and the thickness of temperature inversion layer is stably during 200-300 m. The thermal internal boundary layer penetrated deeply into the land about 10 km,and the height could reach 800 m. The atmospheric diffusion ability in the coastal area was weaker and stronger in the land area.展开更多
An optimal algorithm for the retrieval of chlorophyll, suspended sediments and gelbstoff of case Ⅱ waters in the Pearl River estuary was established with the optical parameters derived from the in-situ data obtained ...An optimal algorithm for the retrieval of chlorophyll, suspended sediments and gelbstoff of case Ⅱ waters in the Pearl River estuary was established with the optical parameters derived from the in-situ data obtained in Jan. 2003 in the same area. And then, the chlorophyll, suspended sediments and gelbstoff of the SeaWiFS pixels on Jan. 29, 2003 corresponding to the in-situ sites of Jan. 25 and 26, 2003 were synchronously retrieved, with average relative errors of 14.9%, 12.1% and 13.6% for chlorophyll, suspended sediments and gelbstoff, respectively. The research results indicated that the optimal retrieval algorithm established here was relatively fit for the retrieval of the chlorophyll, suspended sediments and gelbstoff of case Ⅱ waters in the Pearl River estuary, and had quite good retrieval accuracy.展开更多
The atmospheric precipitation plays an important role in influencing the river chemistry of the Dongjiang River. The atmospheric contribution to river water is estimated by reference to Cl concentration called Cl r...The atmospheric precipitation plays an important role in influencing the river chemistry of the Dongjiang River. The atmospheric contribution to river water is estimated by reference to Cl concentration called Cl ref . The Cl ref of 41 97 μmol/L represents the highest chloride concentration of the rainwater inputs to river water, thus sea salts are responsible for total Cl concentration of the Dongjiang River. According to the principal compositions of precipitation and river water, two approaches sea salt correction and precipitation correction were proposed in order to correct the contribution proportions of atmospheric precipitation on the solutes and to calculate chemical weathering rate. The results reflected that the atmospheric contribution ratios fluctuate from ~5% to ~20% of TDS(total dissolved solids) in the Dongjiang River. As compared with the other world watersheds, the lower dissolved ion contents and high runoff may result in the obvious influence of precipitation on river chemistry in the Dongjiang basin. The major elemental chemistry is mainly controlled by silicate weathering, with the anion HCO - 3 and cation Ca 2+ and Na\++ dominating the major compositions in this basin. The estimated chemical weathering rate of 15 78—23 48 t/(km 2·a) is only 40%—60% of a global average in the Dongjiang basin. Certainly, the estimated results are still under correction gradually because the effect of human activities on the precipitation chemistry has never been quantified in detail.展开更多
An atmospheric pressure nonequilibrium argon/oxygen plasma jet assisted by the preionization of syringe needle electrode discharge is reported. With the syringe needle plasma as its pre-ionization source, the hybrid b...An atmospheric pressure nonequilibrium argon/oxygen plasma jet assisted by the preionization of syringe needle electrode discharge is reported. With the syringe needle plasma as its pre-ionization source, the hybrid barrier-jet was shown to generate uniform discharge with a lower breakdown voltage and a relatively low gas temperature varying from 390 K to 440 K, even when the vol.% oxygen in argon was up to 6%. Utilizing the actinometry method, the concentration of atomic oxygen was estimated to be about in an orders of magnitude of 10^17 cm^-3. The argon/oxygen plasma jet was then employed to clean out heat transfer oil, with a maximum cleaning rate of 0.1 mm/s achieved.展开更多
The fall armyworm(FAW,Lepidoptera:Noctuidae),Spodoptera frugiperda(J.E.Smith),invaded China in mid-December 2018;since then,it has become a great threat to Chinese agricultural production.Qinling Mountains-Huaihe Rive...The fall armyworm(FAW,Lepidoptera:Noctuidae),Spodoptera frugiperda(J.E.Smith),invaded China in mid-December 2018;since then,it has become a great threat to Chinese agricultural production.Qinling Mountains-Huaihe River region(QM-HRR)is the transitional zone between northern and southern China,an important region for both corn and wheat production.Based on the actual occurrence of QM-HRR invaded by FAW in 2019,daily mean surface air temperature and nocturnal wind conditions at 925 hPa were examined,and migratory routes of FAW moths originated in QM-HRR were modeled by a forward-trajectory-analysis approach.The results indicated that migratory activities of FAW adults emerged in QM-HRR were initiated from late June.The moths from western QM-HRR,where has complex topographic terrain,mainly flied to Ningxia and Inner Mongolia before mid September.However,FAW moths from the eastern QM-HRR primarily engaged in high-altitude northward transport assisted by the prevailing southerly winds before mid August,and the North China Plain was identified as the main destination of FAW.Meanwhile,the migration trajectories of FAW moths had a possibility to reach the Northeast China Plain.From mid August,FAW moths in eastern QM-HRR largely migrated southward and returned to the Yangtze River Valley.This study provides detailed information on the occurrence and migration routes of FAW moths from QM-HRR and will be helpful for early warning and development of integrated pest management strategies for the control of this exotic insect pest.展开更多
Measurements of aerosol physical, chemical and optical parameters were carried out in Guangzhou, China from 1 July to 31 July 2006 during the Pearl River Delta Campaign. The dry aerosol scattering coefficient was meas...Measurements of aerosol physical, chemical and optical parameters were carried out in Guangzhou, China from 1 July to 31 July 2006 during the Pearl River Delta Campaign. The dry aerosol scattering coefficient was measured using an integrating nephelometer and the aerosol scattering coefficient for wet conditions was determined by subtracting the sum of the aerosol absorption coefficient, gas scattering coefficient and gas absorption coefficient from the atmospheric extinction coefficient. Following this, the aerosol hygroscopic growth factor, f(RH), was calculated as the ratio of wet and dry aerosol scattering coefficients. Measurements of size-resolved chemical composition, relative humidity (RH), and published functional relationships between particle chemical composition and water uptake were likewise used to find the aerosol scattering coe?cients in wet and dry conditions using Mie theory for internally- or externally-mixed particle species [(NH_4)_2SO_4, NH_4NO_3, NaCl, POM, EC and residue]. Closure was obtained by comparing the measured f(RH) values from the nephelometer and other in situ optical instruments with those computed from chemical composition and thermodynamics. Results show that the model can represent the observed f(RH) and is appropriate for use as a component in other higher-order models.展开更多
Using the summer (June to August) monthly mean data of the National Centers for Environmental Predictions (NCEP) - National Center for Atmospheric Research (NCAR) reanalysis from 1980 to 1997, atmospheric heat sources...Using the summer (June to August) monthly mean data of the National Centers for Environmental Predictions (NCEP) - National Center for Atmospheric Research (NCAR) reanalysis from 1980 to 1997, atmospheric heat sources and moisture sinks are calculated. Anomalous circulation and the vertically integrated heat source with the vertical integrated moisture sink and outgoing longwave radiation (OLR) flux are examined based upon monthly composites for 16 great wet-spells and 8 great dry-spells over the middle-lower reaches of the Yangtze River. The wind anomaly exhibits prominent differences between the great wet-spell and the great dry-spell over the Yangtze River Valley. For the great wet-spell, the anomalous southerly from the Bay of Bengal and the South China Sea and the anomalous northerly over North China enhanced low-level convergence toward a narrow latitudinal belt area (the middle-lower reaches of the Yangtze River). The southerly anomaly is connected with an anticyclonic anomalous circulation system centered at 22 degreesN, 140 degreesE and the northerly anomaly is associated with a cyclonic anomalous circulation system centered at the Japan Sea. In the upper level, the anomalous northwesterly between an anticyclonic anomalous system with the center at 23 degreesN, 105 degreesE and a cyclonic anomalous system with the center at Korea diverged over the middle-lower reaches of the Yangtze River. On the contrary, for the great dry-spell, the anomalous northerly over South China and the anomalous southerly over North China diverged from the Yangtze River Valley in the low level. The former formed in the western part of a cyclonic anomalous system centered at 23 degreesN, 135 degreesE. The latter was located in the western ridge of an anticyclonic anomalous system in the northwestern Pacific. The upper troposphere showed easterly anomaly that converged over the middle-lower reaches of the Yangtze River. A cyclonic anomalous system in South China and an anticyclonic system centered in the Japan Sea enhanced the easterly. Large atmospheric heat source anomalies of opposite signs existed over the western Pacific - the South China Sea, with negative in the great wet-spell and positive in the great dry-spell. The analysis of heat source also revealed positive anomalous heat sources during the great wet-spell and negative anomalous heat sources during the great dry-spell over the Yangtze River valley. The changes of the moisture sink and OLR were correspondingly altered, implying the change of heat source anomaly is due to the latent heat releasing of convective activity. Over the southeastern Tibetan Plateau- the Bay of Bengal, the analysis of heat source shows positive anomalous heat sources during the great wet-spell and negative anomalous heat sources during the great dry-spell because of latent heating change. The change of divergent wind coexisted with the change of heat source. In the great wet-spell, southerly divergent wind anomaly in the low level and northerly divergent wind anomaly in high-level are seen over South China. These divergent wind anomalies are helpful to the low-level convergence anomaly and high-level divergence anomaly over the Yangtze River valley. The low-level northerly divergent wind anomaly and high-level southerly divergent wind anomaly over South China reduced the low-level convergence and high-level divergence over the Yangtze River valley during the great dry-spell.展开更多
The South China Sea began to outspread in the Oligocene. A great quantity of terraneous detritus was deposited in the northern continental shelf of the sea, mostly in Pearl River Mouth Basin, which constituted the mai...The South China Sea began to outspread in the Oligocene. A great quantity of terraneous detritus was deposited in the northern continental shelf of the sea, mostly in Pearl River Mouth Basin, which constituted the main paleo-Pearl River Delta. The delta developed for a long geological time and formed a superimposed area. Almost all the oil and gas fields of detrital rock reservoir distribute in this delta. Thirty-three oil sandstone core samples in the Zhujiang Formation, lower Miocene (23-16 Ma), were collected from nine wells. The illite samples with detrital K feldspar (Kfs) separated from these sandstone cores in four sub-structural belts were analysed by the high-precision 40Ar/39Ar laser stepwise heating technique. All 33 illite 40Ar/39Ar data consistently yielded gradually rising age spectra at the low-temperature steps until reaching age plateaus at mid-high temperature steps. The youngest ages corresponding to the beginning steps were interpreted as the hydrocarbon accumulation ages and the plateau ages in mid-high temperature steps as the contributions of the detrital feldspar representing the ages of the granitic parent rocks in the provenances. The ages of the detrital feldspar from the Zhujiang Formation in the four sub-structural belts were different: (1) the late Cretaceous ages in the Lufeng 13 fault structural belt; (2) the late Cretaceous and early Cretaceous-Jurassic ages in the Huizhou 21 buried hill-fault belt; (3) the Jurassic and Triassic ages in the Xijiang 24 buried hill-fault belt; and (4) the early Cretaceous - late Jurassic ages in the Panyu 4 oil area. These detrital feldspar 4~Ar/39Ar ages become younger and younger from west to east, corresponding to the age distribution of the granites in the adjacent Guangdong Province, Southern China.展开更多
Atmospheric rivers(ARs)are long,narrow,and transient filaments of strong horizontal water vapor transport that can lead to extreme precipitation.To investigate the relationship between ARs and mei-yu rainfall in China...Atmospheric rivers(ARs)are long,narrow,and transient filaments of strong horizontal water vapor transport that can lead to extreme precipitation.To investigate the relationship between ARs and mei-yu rainfall in China,the mei-yu season of 2020 in the Yangtze-Huaihe River basin is taken as an example.An adjusted AR-detection algorithm is applied on integrated water vapor transport(IVT)of the ERA5 reanalysis.The JRA-55 reanalysis and the data from Integrated Multi-satellite Retrievals for GPM(IMERG)are also utilized to study the impacts of ARs on mei-yu rainfall in 2020.The results reveal that ARs in East Asia have an average length of 5400 km,a width of 600 km,a length/width ratio of 9.3,and a northeastward orientation of 30°.ARs are modulated by the western North Pacific subtropical high.The IVT core is located at the south side of low pressure systems,moving eastward with a speed of 10°d−1.For the cross sections of ARs in the Yangtze-Huaihe River basin,75%of the total flux is concentrated below 4 km with low-level jets near AR cores.Moreover,ARs occur mainly in the mei-yu period with a frequency of 20%–60%.The intensity of AR-related precipitation is 6–12 times that of AR-unrelated precipitation,and AR-related precipitation contributes about 50%–80%to total mei-yu precipitation.As shown in this case study of summer 2020,ARs are an essential part of the mei-yu system and have great impacts on mei-yu rainfall.Thus,ARs should receive more attention in research and weather forecast practices.展开更多
River runoff plays an important role in watershed ecosystems and human survival,and it is controlled by multiple environmental factors.However,the synergistic effects of various large-scale circulation factors and met...River runoff plays an important role in watershed ecosystems and human survival,and it is controlled by multiple environmental factors.However,the synergistic effects of various large-scale circulation factors and meteorological factors on the runoff on different time-frequency scales have rarely been explored.In light of this,the underlying mechanism of the synergistic effects of the different environmental factors on the runoff variations was investigated in the Yellow River Basin of China during the period 1950-2019 using the bivariate wavelet coherence(WTC)and multiple wavelet coherence(MWC)methods.First,the continuous wavelet transform(CWT)method was used to analyze the multiscale characteristics of the runoff.The results of the CWT indicate that the runoff exhibited significant continuous or discontinuous annual and semiannual oscillations during the study period.Scattered inter-annual time scales were also observed for the runoff in the Yellow River Basin.The meteorological factors better explained the runoff variations on seasonal and annual time scales.The average wavelet coherence(AWC)and the percent area of the significant coherence(PASC)between the runoff and individual meteorological factors were 0.454 and 19.89%,respectively.The circulation factors mainly regulated the runoff on the inter-annual and decadal time scales with more complicated phase relationships due to their indirect effects on the runoff.The AWC and PASC between the runoff and individual circulation factors were 0.359 and 7.31%,respectively.The MWC analysis revealed that the synergistic effects of multiple factors should be taken into consideration to explain the multiscale characteristic variations of the runoff.The AWC or MWC ranges were 0.320-0.560,0.617-0.755,and 0.819-0.884 for the combinations of one,two,and three circulation and meteorological factors,respectively.The PASC ranges were 3.53%-33.77%,12.93%-36.90%,and 20.67%-39.34%for the combinations one,two,and three driving factors,respectively.The combinations of precipitation,evapotranspiration(or the number of rainy days),and the Arctic Oscillation performed well in explaining the variability in the runoff on all time scales,and the average MWC and PASC were 0.847 and 28.79%,respectively.These findings are of great significance for improving our understanding of hydro-climate interactions and water resources prediction in the Yellow River Basin.展开更多
NCEP/NCAR reanalysis data and a 30-year precipitation dataset of observed daily rainfall from 109 gauge stations are utilized in this paper.Using the REOF we analyzed the spatial distribution of precipitation in the 1...NCEP/NCAR reanalysis data and a 30-year precipitation dataset of observed daily rainfall from 109 gauge stations are utilized in this paper.Using the REOF we analyzed the spatial distribution of precipitation in the 109 stations in the Yangtze River Basin in Meiyu periods from 1978 to 2007.The result showed that the spatial distribution of precipitation in the Yangtze River Basin can be divided into the south and north part.As a result,relationships between an atmospheric heating source(hereafter called <Q_1>) over the Asian region and the precipitation on the south and north side of Yangtze River in Meiyu periods were separately studied in this paper.The results are shown as follows.The flood/drought to the north of Yangtze River(NYR) was mainly related to the <Q_1> over the East Asia summer monsoon region:when the <Q_1> over the Philippines through Western Pacific and the south China was weakened(strengthened),it would probably result in the flood(drought) in NYR;and the precipitation on the south side of Yangtze River(SYR)was related to the <Q_1> over the east Asia and Indian summer monsoon region:when the <Q_1> over the areas from south China to the northern East China Sea and Yellow Sea and south-eastern Japan was strengthened(weakened),and the <Q_1> over the areas from the Bay of Bengal to south-eastern Tibetan Plateau was weakened(strengthened),it will lead to flood(drought) in SYR.展开更多
Electrical and optical properties of an argon plasma jet were characterized. In particular, effects of an additive gas, namely nitrogen or oxygen, on these properties were studied in detail. The plasma jet was found t...Electrical and optical properties of an argon plasma jet were characterized. In particular, effects of an additive gas, namely nitrogen or oxygen, on these properties were studied in detail. The plasma jet was found to be of a glow-like discharge, which scarcely changed upon the injection of an additive gas, either directly or through a glass capillary. Optical emission spectroscopy characterization revealed that excited argon atoms were the predominant active species in this plasma jet. Metastable argon atoms were highly quenched, and N2(C3yIu) became the main energy carrier following nitrogen injection. When oxygen was added to the afterglow zone through a glass capillary, no significant quenching effect was observed and the number of oxygen atoms decreased with the increase in oxygen concentration. Finally, to demonstrate an application of this plasma jet, a high-density polyethylene surface was treated with argon, argon/nitrogen, and argon/oxygen plasmas.展开更多
The temporal and spatial characteristics of winter snowfall in the Yangtze–Huaihe River Basin (YHRB) of China and its possible connection with Scandinavian Atmospheric Teleconnection Pattern (SCAND) anomalies are exp...The temporal and spatial characteristics of winter snowfall in the Yangtze–Huaihe River Basin (YHRB) of China and its possible connection with Scandinavian Atmospheric Teleconnection Pattern (SCAND) anomalies are explored based on daily meteorological data contained in the Daily Surface Climate Dataset for China (V3.0) during the period 1960–2012. Results show that winter snowfall in the YHRB exhibits consistent anomalies over the whole region for the interannual variation during 1960–2012. Further analysis suggests that winter snowfall anomalies in the YHRB are closely linked to the anomalous wintertime SCAND activity. When there is more winter snowfall in the YHRB, SCAND is usually in a positive phase, accompanied by a strengthened Urals blocking high and East Asian trough, which is conducive to strengthened cold-air activity, intensified vertical motions, and more water vapor transport in the YHRB. In contrast, less winter snowfall in the YHRB usually happens in the negative phase of SCAND. Our results provide useful information to better understand the relevant mechanism responsible for anomalous winter snowfall in this area.展开更多
基金supported by The Second Tibetan Plateau Scientific Expedition and Research(STEP)program(2019QZKK0105)the National Natural Science Foundation of China(91437221,91837204).
文摘This study compares the summer atmospheric water cycle,including moisture sources and consumption,in the upstream,midstream,and downstream regions of the Yarlung Zangbo River Basin in the southern Tibetan Plateau.The evolutions of moisture properties under the influence of the westerly and summer southerly monsoon are examined using 5-yr multi-source measurements and ERA5 reanalysis data.Note that moisture consumption in this study is associated with clouds,precipitation,and diabatic heating.Compared to the midstream and downstream regions,the upstream region has less moisture,clouds,and precipitation,where the moisture is brought by the westerly.In early August,the vertical wet advection over this region becomes enhanced and generates more high clouds and precipitation.The midstream region has moisture carried by the westerly in June and by the southerly monsoon from July to August.The higher vertical wet advection maximum here forms more high clouds,with a precipitation peak in early July.The downstream region is mainly affected by the southerly-driven wet advection.The rich moisture and strong vertical wet advection here produce the most clouds and precipitation among the three regions,with a precipitation peak in late June.The height of the maximum moisture condensation is different between the midstream region(325 hPa)and the other two regions(375 hPa),due to the higher upward motion maximum in the midstream region.The diabatic heating structures show that stratiform clouds dominate the upstream region,stratiform clouds and deep convection co-exist in the midstream region,and deep convection systems characterize the downstream region.
基金Under the auspices of National Natural Science Foundation of China(No.52279016,51909106,51879108,42002247,41471160)Natural Science Foundation of Guangdong Province,China(No.2020A1515011038,2020A1515111054)+1 种基金Special Fund for Science and Technology Development in 2016 of Department of Science and Technology of Guangdong Province,China(No.2016A020223007)the Project of Jinan Science and Technology Bureau(No.2021GXRC070)。
文摘Huaihe River Basin(HRB) is located in China’s north-south climatic transition zone,which is very sensitive to global climate change.Based on the daily maximum temperature,minimum temperature,and precipitation data of 40 meteorological stations and nine monthly large-scale ocean-atmospheric circulation indices data during 1959–2019,we present an assessment of the spatial and temporal variations of extreme temperature and precipitation events in the HRB using nine extreme climate indices,and analyze the teleconnection relationship between extreme climate indices and large-scale ocean-atmospheric circulation indices.The results show that warm extreme indices show a significant(P < 0.05) increasing trend,while cold extreme indices(except for cold spell duration) and diurnal temperature range(DTR) show a significant decreasing trend.Furthermore,all extreme temperature indices show significant mutations during 1959-2019.Spatially,a stronger warming trend occurs in eastern HRB than western HRB,while maximum 5-d precipitation(Rx5day) and rainstorm days(R25) show an increasing trend in the southern,central,and northwestern regions of HRB.Arctic oscillation(AO),Atlantic multidecadal oscillation(AMO),and East Atlantic/Western Russia(EA/WR) have a stronger correlation with extreme climate indices compared to other circulation indices.AO and AMO(EA/WR) exhibit a significant(P < 0.05) negative(positive)correlation with frost days and diurnal temperature range.Extreme warm events are strongly correlated with the variability of AMO and EA/WR in most parts of HRB,while extreme cold events are closely related to the variability of AO and AMO in eastern HRB.In contrast,AMO,AO,and EA/WR show limited impacts on extreme precipitation events in most parts of HRB.
基金supported by the Project for Establishing a Sand-dust Monitoring and Forecast System for the North-bank Settlement Area of the Yarlung Zangbo River (under the 13th Five-year Plan of the Tibet Autonomous Region, China)the Chinese Academy of Sciences Interdisciplinary Innovation Team and the Shannan City Science and Technology Plan Project (E129020301).
文摘The wide valley of the Yarlung Zangbo River is one of the most intense areas in terms of aeolian activity on the Tibetan Plateau,China.In the past,the evaluation of the intensity of aeolian activity in the Quxu–Sangri section of the Yarlung Zangbo River Valley was mainly based on data from the old meteorological stations,especially in non-sandy areas.In 2020,six new meteorological stations,which are closest to the new meteorological stations,were built in the wind erosion source regions(i.e.,sandy areas)in the Quxu–Sangri section.In this study,based on mathematical statistics and empirical orthogonal function(EOF)decomposition analysis,we compared the difference of the wind regime between new meteorological stations and old meteorological stations from December 2020 to November 2021,and discussed the reasons for the discrepancy.The results showed that sandy and non-sandy areas differed significantly regarding the mean velocity(8.3(±0.3)versus 7.7(±0.3)m/s,respectively),frequency(12.9%(±6.2%)versus 2.9%(±1.9%),respectively),and dominant direction(nearly east or west versus nearly north or south,respectively)of sand-driving winds,drift potential(168.1(±77.3)versus 24.0(±17.9)VU(where VU is the vector unit),respectively),resultant drift potential(92.3(±78.5)versus 8.7(±9.2)VU,respectively),and resultant drift direction(nearly westward or eastward versus nearly southward or northward,respectively).This indicated an obvious spatial variation in the wind regime between sandy and non-sandy areas and suggested that there exist problems when using wind velocity data from non-sandy areas to evaluate the wind regime in sandy areas.The wind regime between sandy and non-sandy areas differed due to the differences in topography,heat flows,and their coupling with underlying surface,thereby affecting the local atmospheric circulation.Affected by large-scale circulations(westerly jet and Indian monsoon systems),both sandy and non-sandy areas showed similar seasonal variations in their respective wind regime.These findings provide a credible reference for re-understanding the wind regime and scientific wind-sand control in the middle reaches of the Yarlung Zangbo River Valley.
基金supported by the National Key Research and Development Plan (Grant No. 2016YFA0600703)the National Natural Science Foundation of China (Grant Nos. 91744311, 41991283 and 41705058)the funding of the Jiangsu Innovation & Entrepreneurship Team。
文摘Haze pollution in early winter(December and January) in the Yangtze River Delta(YRD) and in North China(NC)are both severe;however, their monthly variations are significantly different. In this study, the dominant large-scale atmospheric circulations and local meteorological conditions were investigated and compared over the YRD and NC in each month. Results showed that the YRD(NC) is dominated by the so-called Scandinavia(East Atlantic/West Russia)pattern in December, and these circulations weaken in January. The East Asian December and January monsoons over the YRD and NC have negative correlations with the number of haze days. The local descending motion facilitates less removal of haze pollution over the YRD, while the local ascending motion facilitates less removal of haze pollution over NC in January, despite a weaker relationship in December. Additionally, the monthly variations of atmospheric circulations showed that adverse meteorological conditions restrict the vertical(horizontal) dispersion of haze pollution in December(January) over the YRD, while the associated local weather conditions are similar in these two months over NC.
基金supported by the National Na-tural Science Foundation of China (Nos. 41775042 and 41275049)。
文摘Atmospheric Rivers(ARs) are narrow and elongated water vapor belts in troposphere with meridional transport across the mid-latitudes towards high-latitudes. Compared with ARs occurred over the northeastern Pacific, the western coast of North America and Europe, the ARs over the East Asia have received less attention. In this paper, the characteristics of ARs which affected China in the area 20?–60?N, 95?–165?E in the middle summer season from 2001 to 2016 were investigated by using European Center for Medium-Range Weather Forecasts(ECMWF) ERA-Interim reanalysis data and Multi-functional Transport Satellites-1 R(MTSAT-1 R) infrared data. Totally, 134 ARs occurred during that period, and averagely 8.4 ARs occurred per year. Statistically, 101 ARs were in east-west orientation, and 33 ARs were in north-south orientation, which accounts for about 75% and 25%, respectively. Herein we report the occurrence number, duration time, intensity, length, width, ratio of length to width, and extension orientation of these ARs, which provide the basic information for those who have interest in ARs over the East Asia.
基金supported by the National Key R&D Program of China(Grant No.2022YFE0106300)the National Natural Science Foundation of China(Grant Nos.42105052 and 42106220)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(Grant No.2020B1515020025)the fundamental research funds for the Norges Forskningsråd(Grant No.328886).
文摘Arctic sea ice has undergone a significant decline in the Barents-Kara Sea(BKS)since the late 1990s.Previous studies have shown that the decrease in sea ice caused by increased poleward moisture transport is modulated by tropical sea temperature changes(mainly referring to La Niña events).The occurrence of multi-year La Niña(MYLA)events has increased significantly in recent decades,and their impact on Arctic sea ice needs to be further explored.In this study,we investigate the relationship between sea-ice variation and different atmospheric diagnostics during MYLA and other La Niña(OTLA)years.The decline in BKS sea ice during MYLA winters is significantly stronger than that during OTLA years.This is because MYLA events tend to be accompanied by a warm Arctic-cold continent pattern with a barotropic high pressure blocked over the Urals region.Consequently,more frequent northward atmospheric rivers intrude into the BKS,intensifying longwave radiation downward to the underlying surface and melting the BKS sea ice.However,in the early winter of OTLA years,a negative North Atlantic Oscillation presents in the high latitudes of the Northern Hemisphere,which obstructs the atmospheric rivers to the south of Iceland.We infer that such a different response of BKS sea-ice decline to different La Niña events is related to stratospheric processes.Considering the rapid climate changes in the past,more frequent MYLA events may account for the substantial Arctic sea-ice loss in recent decades.
文摘<div style="text-align:justify;"> There are 158 sampling points to be set up in the Pearl River delta economic region. The collecting period is mostly one year, namely, from July 2007 to July 2008. The eight heavy metal elements of Cr, Ni, Cu, Pb, Zn, As, Hg, and Cd in 474 dry and wet deposition samples were tested in terms of the standard procedures. Their average annual fluxes have no obvious difference between dry deposition and wet deposition. So these elements might be at an equilibrium or quasi-equilibrium state between dry deposition and wet deposition. </div>
基金Supported by The Special Project of Public Welfare Industry(Meteorology)of Science and Technology Ministry(GYHY200806020)The National Natural Science Fund(40975084)The Science Research Fund of Liaoning Meteorological Bureau(2008008)
文摘By using the meteorological data in the pollution boundary layer which was observed in two ground observation sites:coast and land in the river outlet area of Grand Liao River during January-February in 2007,the daily change characteristics of pollute boundary layer in winter in the area were discussed. The results showed that the pollute boundary layer in the river outlet area of Grand Liao River was affected by the sea and land. In the certain weather condition,maybe the sea-land breeze appeared in the low altitude which was below 200 m in the coastal zone. The stability change in the different height in the coastal zone was more stable than in the land zone,and the wind field change in the area was mainly in 300 m low altitude. At night,the temperature inversion often appears in the area,and the thickness of temperature inversion layer is stably during 200-300 m. The thermal internal boundary layer penetrated deeply into the land about 10 km,and the height could reach 800 m. The atmospheric diffusion ability in the coastal area was weaker and stronger in the land area.
文摘An optimal algorithm for the retrieval of chlorophyll, suspended sediments and gelbstoff of case Ⅱ waters in the Pearl River estuary was established with the optical parameters derived from the in-situ data obtained in Jan. 2003 in the same area. And then, the chlorophyll, suspended sediments and gelbstoff of the SeaWiFS pixels on Jan. 29, 2003 corresponding to the in-situ sites of Jan. 25 and 26, 2003 were synchronously retrieved, with average relative errors of 14.9%, 12.1% and 13.6% for chlorophyll, suspended sediments and gelbstoff, respectively. The research results indicated that the optimal retrieval algorithm established here was relatively fit for the retrieval of the chlorophyll, suspended sediments and gelbstoff of case Ⅱ waters in the Pearl River estuary, and had quite good retrieval accuracy.
文摘The atmospheric precipitation plays an important role in influencing the river chemistry of the Dongjiang River. The atmospheric contribution to river water is estimated by reference to Cl concentration called Cl ref . The Cl ref of 41 97 μmol/L represents the highest chloride concentration of the rainwater inputs to river water, thus sea salts are responsible for total Cl concentration of the Dongjiang River. According to the principal compositions of precipitation and river water, two approaches sea salt correction and precipitation correction were proposed in order to correct the contribution proportions of atmospheric precipitation on the solutes and to calculate chemical weathering rate. The results reflected that the atmospheric contribution ratios fluctuate from ~5% to ~20% of TDS(total dissolved solids) in the Dongjiang River. As compared with the other world watersheds, the lower dissolved ion contents and high runoff may result in the obvious influence of precipitation on river chemistry in the Dongjiang basin. The major elemental chemistry is mainly controlled by silicate weathering, with the anion HCO - 3 and cation Ca 2+ and Na\++ dominating the major compositions in this basin. The estimated chemical weathering rate of 15 78—23 48 t/(km 2·a) is only 40%—60% of a global average in the Dongjiang basin. Certainly, the estimated results are still under correction gradually because the effect of human activities on the precipitation chemistry has never been quantified in detail.
基金supported by National Natural Science Foundation of China (Nos.10775026, 50537020, 50528707)
文摘An atmospheric pressure nonequilibrium argon/oxygen plasma jet assisted by the preionization of syringe needle electrode discharge is reported. With the syringe needle plasma as its pre-ionization source, the hybrid barrier-jet was shown to generate uniform discharge with a lower breakdown voltage and a relatively low gas temperature varying from 390 K to 440 K, even when the vol.% oxygen in argon was up to 6%. Utilizing the actinometry method, the concentration of atomic oxygen was estimated to be about in an orders of magnitude of 10^17 cm^-3. The argon/oxygen plasma jet was then employed to clean out heat transfer oil, with a maximum cleaning rate of 0.1 mm/s achieved.
基金supported by the National Natural Science Foundation of China(31901873 and 31727901)the China Postdoctoral Science Foundation(2019M660896)+1 种基金the Central Public-interest Scientific Institution Basal Research Fund,China(CAAS-ZDRW202007)the National Key R&D Program of China(2019YFD0300105)。
文摘The fall armyworm(FAW,Lepidoptera:Noctuidae),Spodoptera frugiperda(J.E.Smith),invaded China in mid-December 2018;since then,it has become a great threat to Chinese agricultural production.Qinling Mountains-Huaihe River region(QM-HRR)is the transitional zone between northern and southern China,an important region for both corn and wheat production.Based on the actual occurrence of QM-HRR invaded by FAW in 2019,daily mean surface air temperature and nocturnal wind conditions at 925 hPa were examined,and migratory routes of FAW moths originated in QM-HRR were modeled by a forward-trajectory-analysis approach.The results indicated that migratory activities of FAW adults emerged in QM-HRR were initiated from late June.The moths from western QM-HRR,where has complex topographic terrain,mainly flied to Ningxia and Inner Mongolia before mid September.However,FAW moths from the eastern QM-HRR primarily engaged in high-altitude northward transport assisted by the prevailing southerly winds before mid August,and the North China Plain was identified as the main destination of FAW.Meanwhile,the migration trajectories of FAW moths had a possibility to reach the Northeast China Plain.From mid August,FAW moths in eastern QM-HRR largely migrated southward and returned to the Yangtze River Valley.This study provides detailed information on the occurrence and migration routes of FAW moths from QM-HRR and will be helpful for early warning and development of integrated pest management strategies for the control of this exotic insect pest.
基金supported by the Ministry of Science and Technology of China (GrantNos. 2006AA06A306 and 2005CB422207) the National Natural Science Foundation of China (Grant Nos.40675082 and 40905055)
文摘Measurements of aerosol physical, chemical and optical parameters were carried out in Guangzhou, China from 1 July to 31 July 2006 during the Pearl River Delta Campaign. The dry aerosol scattering coefficient was measured using an integrating nephelometer and the aerosol scattering coefficient for wet conditions was determined by subtracting the sum of the aerosol absorption coefficient, gas scattering coefficient and gas absorption coefficient from the atmospheric extinction coefficient. Following this, the aerosol hygroscopic growth factor, f(RH), was calculated as the ratio of wet and dry aerosol scattering coefficients. Measurements of size-resolved chemical composition, relative humidity (RH), and published functional relationships between particle chemical composition and water uptake were likewise used to find the aerosol scattering coe?cients in wet and dry conditions using Mie theory for internally- or externally-mixed particle species [(NH_4)_2SO_4, NH_4NO_3, NaCl, POM, EC and residue]. Closure was obtained by comparing the measured f(RH) values from the nephelometer and other in situ optical instruments with those computed from chemical composition and thermodynamics. Results show that the model can represent the observed f(RH) and is appropriate for use as a component in other higher-order models.
基金Supported by National Key Programme for Developing Basic Sciences G1998040900 Part 1 and IAPInnovation Foundation 8-1308.
文摘Using the summer (June to August) monthly mean data of the National Centers for Environmental Predictions (NCEP) - National Center for Atmospheric Research (NCAR) reanalysis from 1980 to 1997, atmospheric heat sources and moisture sinks are calculated. Anomalous circulation and the vertically integrated heat source with the vertical integrated moisture sink and outgoing longwave radiation (OLR) flux are examined based upon monthly composites for 16 great wet-spells and 8 great dry-spells over the middle-lower reaches of the Yangtze River. The wind anomaly exhibits prominent differences between the great wet-spell and the great dry-spell over the Yangtze River Valley. For the great wet-spell, the anomalous southerly from the Bay of Bengal and the South China Sea and the anomalous northerly over North China enhanced low-level convergence toward a narrow latitudinal belt area (the middle-lower reaches of the Yangtze River). The southerly anomaly is connected with an anticyclonic anomalous circulation system centered at 22 degreesN, 140 degreesE and the northerly anomaly is associated with a cyclonic anomalous circulation system centered at the Japan Sea. In the upper level, the anomalous northwesterly between an anticyclonic anomalous system with the center at 23 degreesN, 105 degreesE and a cyclonic anomalous system with the center at Korea diverged over the middle-lower reaches of the Yangtze River. On the contrary, for the great dry-spell, the anomalous northerly over South China and the anomalous southerly over North China diverged from the Yangtze River Valley in the low level. The former formed in the western part of a cyclonic anomalous system centered at 23 degreesN, 135 degreesE. The latter was located in the western ridge of an anticyclonic anomalous system in the northwestern Pacific. The upper troposphere showed easterly anomaly that converged over the middle-lower reaches of the Yangtze River. A cyclonic anomalous system in South China and an anticyclonic system centered in the Japan Sea enhanced the easterly. Large atmospheric heat source anomalies of opposite signs existed over the western Pacific - the South China Sea, with negative in the great wet-spell and positive in the great dry-spell. The analysis of heat source also revealed positive anomalous heat sources during the great wet-spell and negative anomalous heat sources during the great dry-spell over the Yangtze River valley. The changes of the moisture sink and OLR were correspondingly altered, implying the change of heat source anomaly is due to the latent heat releasing of convective activity. Over the southeastern Tibetan Plateau- the Bay of Bengal, the analysis of heat source shows positive anomalous heat sources during the great wet-spell and negative anomalous heat sources during the great dry-spell because of latent heating change. The change of divergent wind coexisted with the change of heat source. In the great wet-spell, southerly divergent wind anomaly in the low level and northerly divergent wind anomaly in high-level are seen over South China. These divergent wind anomalies are helpful to the low-level convergence anomaly and high-level divergence anomaly over the Yangtze River valley. The low-level northerly divergent wind anomaly and high-level southerly divergent wind anomaly over South China reduced the low-level convergence and high-level divergence over the Yangtze River valley during the great dry-spell.
基金supported by the National Natural Science Foundation of China (40972095)the NationalS & T Major Project (2008ZX05023-03)
文摘The South China Sea began to outspread in the Oligocene. A great quantity of terraneous detritus was deposited in the northern continental shelf of the sea, mostly in Pearl River Mouth Basin, which constituted the main paleo-Pearl River Delta. The delta developed for a long geological time and formed a superimposed area. Almost all the oil and gas fields of detrital rock reservoir distribute in this delta. Thirty-three oil sandstone core samples in the Zhujiang Formation, lower Miocene (23-16 Ma), were collected from nine wells. The illite samples with detrital K feldspar (Kfs) separated from these sandstone cores in four sub-structural belts were analysed by the high-precision 40Ar/39Ar laser stepwise heating technique. All 33 illite 40Ar/39Ar data consistently yielded gradually rising age spectra at the low-temperature steps until reaching age plateaus at mid-high temperature steps. The youngest ages corresponding to the beginning steps were interpreted as the hydrocarbon accumulation ages and the plateau ages in mid-high temperature steps as the contributions of the detrital feldspar representing the ages of the granitic parent rocks in the provenances. The ages of the detrital feldspar from the Zhujiang Formation in the four sub-structural belts were different: (1) the late Cretaceous ages in the Lufeng 13 fault structural belt; (2) the late Cretaceous and early Cretaceous-Jurassic ages in the Huizhou 21 buried hill-fault belt; (3) the Jurassic and Triassic ages in the Xijiang 24 buried hill-fault belt; and (4) the early Cretaceous - late Jurassic ages in the Panyu 4 oil area. These detrital feldspar 4~Ar/39Ar ages become younger and younger from west to east, corresponding to the age distribution of the granites in the adjacent Guangdong Province, Southern China.
基金This research was supported jointly by the National Key Research and Development Program(Grant No.2016YFA0600604)the National Natural Science Foundation of China(Grant No.4191101005 and 4181101164)the Alliance of the International Science Organizations(Grant No.ANSO-CR-KP-2020-01).
文摘Atmospheric rivers(ARs)are long,narrow,and transient filaments of strong horizontal water vapor transport that can lead to extreme precipitation.To investigate the relationship between ARs and mei-yu rainfall in China,the mei-yu season of 2020 in the Yangtze-Huaihe River basin is taken as an example.An adjusted AR-detection algorithm is applied on integrated water vapor transport(IVT)of the ERA5 reanalysis.The JRA-55 reanalysis and the data from Integrated Multi-satellite Retrievals for GPM(IMERG)are also utilized to study the impacts of ARs on mei-yu rainfall in 2020.The results reveal that ARs in East Asia have an average length of 5400 km,a width of 600 km,a length/width ratio of 9.3,and a northeastward orientation of 30°.ARs are modulated by the western North Pacific subtropical high.The IVT core is located at the south side of low pressure systems,moving eastward with a speed of 10°d−1.For the cross sections of ARs in the Yangtze-Huaihe River basin,75%of the total flux is concentrated below 4 km with low-level jets near AR cores.Moreover,ARs occur mainly in the mei-yu period with a frequency of 20%–60%.The intensity of AR-related precipitation is 6–12 times that of AR-unrelated precipitation,and AR-related precipitation contributes about 50%–80%to total mei-yu precipitation.As shown in this case study of summer 2020,ARs are an essential part of the mei-yu system and have great impacts on mei-yu rainfall.Thus,ARs should receive more attention in research and weather forecast practices.
基金This research was financially supported by the National Natural Science Foundation of China-Shandong Joint Fund(U2006227,U1906234)the National Natural Science Foundation of China(51279189).
文摘River runoff plays an important role in watershed ecosystems and human survival,and it is controlled by multiple environmental factors.However,the synergistic effects of various large-scale circulation factors and meteorological factors on the runoff on different time-frequency scales have rarely been explored.In light of this,the underlying mechanism of the synergistic effects of the different environmental factors on the runoff variations was investigated in the Yellow River Basin of China during the period 1950-2019 using the bivariate wavelet coherence(WTC)and multiple wavelet coherence(MWC)methods.First,the continuous wavelet transform(CWT)method was used to analyze the multiscale characteristics of the runoff.The results of the CWT indicate that the runoff exhibited significant continuous or discontinuous annual and semiannual oscillations during the study period.Scattered inter-annual time scales were also observed for the runoff in the Yellow River Basin.The meteorological factors better explained the runoff variations on seasonal and annual time scales.The average wavelet coherence(AWC)and the percent area of the significant coherence(PASC)between the runoff and individual meteorological factors were 0.454 and 19.89%,respectively.The circulation factors mainly regulated the runoff on the inter-annual and decadal time scales with more complicated phase relationships due to their indirect effects on the runoff.The AWC and PASC between the runoff and individual circulation factors were 0.359 and 7.31%,respectively.The MWC analysis revealed that the synergistic effects of multiple factors should be taken into consideration to explain the multiscale characteristic variations of the runoff.The AWC or MWC ranges were 0.320-0.560,0.617-0.755,and 0.819-0.884 for the combinations of one,two,and three circulation and meteorological factors,respectively.The PASC ranges were 3.53%-33.77%,12.93%-36.90%,and 20.67%-39.34%for the combinations one,two,and three driving factors,respectively.The combinations of precipitation,evapotranspiration(or the number of rainy days),and the Arctic Oscillation performed well in explaining the variability in the runoff on all time scales,and the average MWC and PASC were 0.847 and 28.79%,respectively.These findings are of great significance for improving our understanding of hydro-climate interactions and water resources prediction in the Yellow River Basin.
基金National Natural Science Foundation of China(41275080)China Meteorological Administration Special Public Welfare Research Fund(GYHY201306022)Open Research Fund Program of Plateau Atmosphere and Environment Key Laboratory of Sichuan Province(PAEKL-2010-C3)
文摘NCEP/NCAR reanalysis data and a 30-year precipitation dataset of observed daily rainfall from 109 gauge stations are utilized in this paper.Using the REOF we analyzed the spatial distribution of precipitation in the 109 stations in the Yangtze River Basin in Meiyu periods from 1978 to 2007.The result showed that the spatial distribution of precipitation in the Yangtze River Basin can be divided into the south and north part.As a result,relationships between an atmospheric heating source(hereafter called <Q_1>) over the Asian region and the precipitation on the south and north side of Yangtze River in Meiyu periods were separately studied in this paper.The results are shown as follows.The flood/drought to the north of Yangtze River(NYR) was mainly related to the <Q_1> over the East Asia summer monsoon region:when the <Q_1> over the Philippines through Western Pacific and the south China was weakened(strengthened),it would probably result in the flood(drought) in NYR;and the precipitation on the south side of Yangtze River(SYR)was related to the <Q_1> over the east Asia and Indian summer monsoon region:when the <Q_1> over the areas from south China to the northern East China Sea and Yellow Sea and south-eastern Japan was strengthened(weakened),and the <Q_1> over the areas from the Bay of Bengal to south-eastern Tibetan Plateau was weakened(strengthened),it will lead to flood(drought) in SYR.
文摘Electrical and optical properties of an argon plasma jet were characterized. In particular, effects of an additive gas, namely nitrogen or oxygen, on these properties were studied in detail. The plasma jet was found to be of a glow-like discharge, which scarcely changed upon the injection of an additive gas, either directly or through a glass capillary. Optical emission spectroscopy characterization revealed that excited argon atoms were the predominant active species in this plasma jet. Metastable argon atoms were highly quenched, and N2(C3yIu) became the main energy carrier following nitrogen injection. When oxygen was added to the afterglow zone through a glass capillary, no significant quenching effect was observed and the number of oxygen atoms decreased with the increase in oxygen concentration. Finally, to demonstrate an application of this plasma jet, a high-density polyethylene surface was treated with argon, argon/nitrogen, and argon/oxygen plasmas.
基金jointly supported by jointly supported by the National Key Research and Development Program of China(Grant No.2016YFA0600702)the National Natural Science Foundation of China(Grant No.41625019)
文摘The temporal and spatial characteristics of winter snowfall in the Yangtze–Huaihe River Basin (YHRB) of China and its possible connection with Scandinavian Atmospheric Teleconnection Pattern (SCAND) anomalies are explored based on daily meteorological data contained in the Daily Surface Climate Dataset for China (V3.0) during the period 1960–2012. Results show that winter snowfall in the YHRB exhibits consistent anomalies over the whole region for the interannual variation during 1960–2012. Further analysis suggests that winter snowfall anomalies in the YHRB are closely linked to the anomalous wintertime SCAND activity. When there is more winter snowfall in the YHRB, SCAND is usually in a positive phase, accompanied by a strengthened Urals blocking high and East Asian trough, which is conducive to strengthened cold-air activity, intensified vertical motions, and more water vapor transport in the YHRB. In contrast, less winter snowfall in the YHRB usually happens in the negative phase of SCAND. Our results provide useful information to better understand the relevant mechanism responsible for anomalous winter snowfall in this area.