Daily and annual average atmospheric environmental capacity coefficient(A-value) sequences for China's Mainland are calculated from hourly data recorded at 378 ground stations over 1975–2014. A-values at differen...Daily and annual average atmospheric environmental capacity coefficient(A-value) sequences for China's Mainland are calculated from hourly data recorded at 378 ground stations over 1975–2014. A-values at different recurrence intervals are calculated by fitting the sequences to Pearson type III distribution curves. Based on these A-values and source-sink balance(reference concentration 100 μg m^(-3)), atmospheric environmental capacities at the recurrence intervals are calculated for all of China's Mainland and each provincial administrative region. The climate average atmospheric environmental capacity reference value for the entire mainland is 2.169×10~7 t yr^(-1). An urban atmospheric load index is defined for analyses of the impact of population density on the urban atmospheric environment. Analyses suggest that this index is also useful for differentiating whether air quality changes are attributable to varying meteorological conditions or variations of artificial emission rate.Equations guiding the control of unorganized emission sources are derived for preventing air quality deterioration during urban expansion and population concentration.展开更多
This paper establishes the kinetic equations in atmospheric chemistry that describe the macroscopic mechanisms of secondary fine particle pollution generated by precursors during atmospheric self-purification.The dyna...This paper establishes the kinetic equations in atmospheric chemistry that describe the macroscopic mechanisms of secondary fine particle pollution generated by precursors during atmospheric self-purification.The dynamic and static solutions of these equations can be applied to calculate quantitative relationships between the concentration ratio of precursors and secondary fine particles as well as the physical clearance power of the atmosphere,chemical reaction rate,and the scale of a contaminated area.The dynamic solution presented here therefore corresponds with a theoretical formula for calculating the overall rate constant for the oxidation reaction of reducing pollutants in the actual atmosphere based on their local concentrations and meteorological monitoring data.In addition,the static solution presented in this paper reveals the functional relationship between the concentration of secondary fine particles and precursor emission rate as well as atmospheric self-purification capacity.This result can be applied to determine the atmospheric environmental capacity of a precursor.Hourly records collected over the last 40 years from 378 weather stations in China's Mainland as well as the spatiotemporal distribution sequence of overall oxidation reaction rates from precursors show that when the reference concentration limit of secondary fine particles is100μmol m-3,the atmospheric environmental capacity of total precursors canbe calculated as 24890×1010 mol yr-1.Thus,when the annual average concentration limit of given fine particles is 35μg m-3 and the ratio of sulfate and nitrate to 30%and 20%of the total amount of fine particles,the capacities of SO2,NOx and NH3 are 1255,1344,and 832(1010g yr-1),respectively.The clearance density of precursors for different return periods across China's Mainland under above conditions are also provided in this study.展开更多
Atmospheric oxidizing capacity(AOC)is an essential driving force of troposphere chemistry and self-cleaning,but the definition of AOC and its quantitative representation remain uncertain.Driven by national demand for ...Atmospheric oxidizing capacity(AOC)is an essential driving force of troposphere chemistry and self-cleaning,but the definition of AOC and its quantitative representation remain uncertain.Driven by national demand for air pollution control in recent years,Chinese scholars have carried out studies on theories of atmospheric chemistry and have made considerable progress in AOC research.This paper will give a brief review of these developments.First,AOC indexes were established that represent apparent atmospheric oxidizing ability(AOIe)and potential atmospheric oxidizing ability(AOIp)based on aspects of macrothermodynamics and microdynamics,respectively.A closed study refined the quantitative contributions of heterogeneous chemistry to AOC in Beijing,and these AOC methods were further applied in Beijing-Tianjin-Hebei and key areas across the country.In addition,the detection of ground or vertical profiles for atmospheric OH·,HO_(2)·,NO_(3)·radicals and reservoir molecules can now be obtained with domestic instruments in diverse environments.Moreover,laboratory smoke chamber simulations revealed heterogeneous processes involving reactions of O_(3)and NO_(2),which are typical oxidants in the surface/interface atmosphere,and the evolutionary and budgetary implications of atmospheric oxidants reacting under multispecies,multiphase and multi-interface conditions were obtained.Finally,based on the GRAPES-CUACE adjoint model improved by Chinese scholars,simulations of key substances affecting atmospheric oxidation and secondary organic and inorganic aerosol formation have been optimized.Normalized numerical simulations of AOIe and AOIp were performed,and regional coordination of AOC was adjusted.An optimized plan for controlling O_(3)and PM2.5was analyzed by scenario simulation.展开更多
本文使用NCEP(National Center for Environmental Prediction)再分析月平均数据(2.5°×2.5°)、1980~2015年北京地区(54511站点)的探空数据及温、压、湿、风、降水数据,分析了近35年来北京地区大气污染扩散条件的变化.主...本文使用NCEP(National Center for Environmental Prediction)再分析月平均数据(2.5°×2.5°)、1980~2015年北京地区(54511站点)的探空数据及温、压、湿、风、降水数据,分析了近35年来北京地区大气污染扩散条件的变化.主要结论有:1980~2015年,大气不断增温,1990年以后逆温明显,大气较为稳定,冷空气到达北京上空后对下层的影响减弱,3级以上偏北风频率减少,近地层辐合.同时,2000年以后中高层下沉运动位置不断下压,低层上升运动加强,低层上升运动被限制在边界层以内,这样会导致垂直扩散条件转差.1980~1989年大气容量指数较为稳定,1990~1999年大气容量指数出现波动,而2000~2015年大气容量指数呈现明显减小的趋势.总体来看,近35年大气自身的容纳能力呈现一个平缓的下降趋势.1980~1989年春季和冬季大气容量指数较大,1990~1999年春季和夏季大气容量指数较大,但是2000年以后,无论哪个季节,大气自身的容纳能力都是在减弱的,季节性差异变小.边界层高度在这30多年来都是春季和夏季较高,秋季和冬季明显降低.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 41405136)
文摘Daily and annual average atmospheric environmental capacity coefficient(A-value) sequences for China's Mainland are calculated from hourly data recorded at 378 ground stations over 1975–2014. A-values at different recurrence intervals are calculated by fitting the sequences to Pearson type III distribution curves. Based on these A-values and source-sink balance(reference concentration 100 μg m^(-3)), atmospheric environmental capacities at the recurrence intervals are calculated for all of China's Mainland and each provincial administrative region. The climate average atmospheric environmental capacity reference value for the entire mainland is 2.169×10~7 t yr^(-1). An urban atmospheric load index is defined for analyses of the impact of population density on the urban atmospheric environment. Analyses suggest that this index is also useful for differentiating whether air quality changes are attributable to varying meteorological conditions or variations of artificial emission rate.Equations guiding the control of unorganized emission sources are derived for preventing air quality deterioration during urban expansion and population concentration.
基金supported by S & T Development Program (Grant No. CAMS 2018KJ026)
文摘This paper establishes the kinetic equations in atmospheric chemistry that describe the macroscopic mechanisms of secondary fine particle pollution generated by precursors during atmospheric self-purification.The dynamic and static solutions of these equations can be applied to calculate quantitative relationships between the concentration ratio of precursors and secondary fine particles as well as the physical clearance power of the atmosphere,chemical reaction rate,and the scale of a contaminated area.The dynamic solution presented here therefore corresponds with a theoretical formula for calculating the overall rate constant for the oxidation reaction of reducing pollutants in the actual atmosphere based on their local concentrations and meteorological monitoring data.In addition,the static solution presented in this paper reveals the functional relationship between the concentration of secondary fine particles and precursor emission rate as well as atmospheric self-purification capacity.This result can be applied to determine the atmospheric environmental capacity of a precursor.Hourly records collected over the last 40 years from 378 weather stations in China's Mainland as well as the spatiotemporal distribution sequence of overall oxidation reaction rates from precursors show that when the reference concentration limit of secondary fine particles is100μmol m-3,the atmospheric environmental capacity of total precursors canbe calculated as 24890×1010 mol yr-1.Thus,when the annual average concentration limit of given fine particles is 35μg m-3 and the ratio of sulfate and nitrate to 30%and 20%of the total amount of fine particles,the capacities of SO2,NOx and NH3 are 1255,1344,and 832(1010g yr-1),respectively.The clearance density of precursors for different return periods across China's Mainland under above conditions are also provided in this study.
基金supported by the Ministry of Science and Technology of the People’s Republic of China(No.2017YFC0210000)the Young Talent Project of the Center for Excellence in Regional Atmospheric Environment,CAS(No.CERAE202002)+1 种基金the National Natural Science Foundation of China(No.41705110)Beijing Major Science and Technology Project(No.Z211100004321006)。
文摘Atmospheric oxidizing capacity(AOC)is an essential driving force of troposphere chemistry and self-cleaning,but the definition of AOC and its quantitative representation remain uncertain.Driven by national demand for air pollution control in recent years,Chinese scholars have carried out studies on theories of atmospheric chemistry and have made considerable progress in AOC research.This paper will give a brief review of these developments.First,AOC indexes were established that represent apparent atmospheric oxidizing ability(AOIe)and potential atmospheric oxidizing ability(AOIp)based on aspects of macrothermodynamics and microdynamics,respectively.A closed study refined the quantitative contributions of heterogeneous chemistry to AOC in Beijing,and these AOC methods were further applied in Beijing-Tianjin-Hebei and key areas across the country.In addition,the detection of ground or vertical profiles for atmospheric OH·,HO_(2)·,NO_(3)·radicals and reservoir molecules can now be obtained with domestic instruments in diverse environments.Moreover,laboratory smoke chamber simulations revealed heterogeneous processes involving reactions of O_(3)and NO_(2),which are typical oxidants in the surface/interface atmosphere,and the evolutionary and budgetary implications of atmospheric oxidants reacting under multispecies,multiphase and multi-interface conditions were obtained.Finally,based on the GRAPES-CUACE adjoint model improved by Chinese scholars,simulations of key substances affecting atmospheric oxidation and secondary organic and inorganic aerosol formation have been optimized.Normalized numerical simulations of AOIe and AOIp were performed,and regional coordination of AOC was adjusted.An optimized plan for controlling O_(3)and PM2.5was analyzed by scenario simulation.
文摘本文使用NCEP(National Center for Environmental Prediction)再分析月平均数据(2.5°×2.5°)、1980~2015年北京地区(54511站点)的探空数据及温、压、湿、风、降水数据,分析了近35年来北京地区大气污染扩散条件的变化.主要结论有:1980~2015年,大气不断增温,1990年以后逆温明显,大气较为稳定,冷空气到达北京上空后对下层的影响减弱,3级以上偏北风频率减少,近地层辐合.同时,2000年以后中高层下沉运动位置不断下压,低层上升运动加强,低层上升运动被限制在边界层以内,这样会导致垂直扩散条件转差.1980~1989年大气容量指数较为稳定,1990~1999年大气容量指数出现波动,而2000~2015年大气容量指数呈现明显减小的趋势.总体来看,近35年大气自身的容纳能力呈现一个平缓的下降趋势.1980~1989年春季和冬季大气容量指数较大,1990~1999年春季和夏季大气容量指数较大,但是2000年以后,无论哪个季节,大气自身的容纳能力都是在减弱的,季节性差异变小.边界层高度在这30多年来都是春季和夏季较高,秋季和冬季明显降低.