期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
27.3-day and 13.6-day Atmospheric Tide and Lunar Forcing on Atmospheric Circulation 被引量:7
1
作者 李国庆 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第3期359-374,共16页
An analysis of time variations of the earth’s length of day (LOD) versus atmospheric geopotential height fields and lunar phase is presented. A strong correlation is found between LOD and geopotential height from whi... An analysis of time variations of the earth’s length of day (LOD) versus atmospheric geopotential height fields and lunar phase is presented. A strong correlation is found between LOD and geopotential height from which a close relationship is inferred and found between atmospheric circulation and the lunar cycle around the earth. It is found that there is a 27.3-day and 13.6-day east-west oscillation in the atmospheric circulation following the lunar phase change. The lunar revolution around the earth strongly influences the atmospheric circulation. During each lunar cycle around the earth there is, on average, an alternating change of 6.8-day-decrease, 6.8-day-increase, 6.8-day-decrease and 6.8-day-increase in atmospheric zonal wind, atmospheric angular momentum and LOD. The dominant factor producing such an oscillation in atmospheric circulation is the periodic change of lunar declination during the lunar revolution around the earth. The 27.3- day and 13.6-day atmospheric oscillatory phenomenon is akin 展开更多
关键词 atmospheric tide subseasonal oscillation lunar influence atmospheric circulation
下载PDF
Influence of annual atmospheric tide asymmetry on annual anomalies of the ionospheric mean state
2
作者 ZhiPeng Ren WeiXing Wan +1 位作者 JianGang Xiong Xing Li 《Earth and Planetary Physics》 CSCD 2020年第5期429-435,共7页
Through respectively adding June tide and December tide at the low boundary of the GCITEM-IGGCAS model (Global CoupledIonosphere–Thermosphere–Electrodynamics Model, Institute of Geology and Geophysics, Chinese Acade... Through respectively adding June tide and December tide at the low boundary of the GCITEM-IGGCAS model (Global CoupledIonosphere–Thermosphere–Electrodynamics Model, Institute of Geology and Geophysics, Chinese Academy of Sciences), we simulate theinfluence of atmospheric tide on the annual anomalies of the zonal mean state of the ionospheric electron density, and report that thetidal influence varies with latitude, altitude, and solar activity level. Compared with the density driven by the December tide, the June tidemainly increases lower ionospheric electron densities (below roughly the height of 200 km), and decreases electron densities in thehigher ionosphere (above the height of 200 km). In the low-latitude ionosphere, tides affect the equatorial ionization anomaly structure(EIA) in the relative difference of electron density, which suggests that tides affect the equatorial vertical E×B plasma drifts. Although thetide-driven annual anomalies do not vary significantly with the solar flux level in the lower ionosphere, in the higher ionosphere theannual anomalies generally decrease with solar activity. 展开更多
关键词 ionospheric annual anomalies atmospheric tide ionosphere–atmosphere coupling
下载PDF
27.3-day and Average 13.6-day Periodic Oscillations in the Earth’s Rotation Rate and Atmospheric Pressure Fields Due to Celestial Gravitation Forcing 被引量:1
3
作者 李国庆 宗海锋 张庆云 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第1期45-58,共14页
Variation in length of day of the Earth (LOD, equivalent to the Earth's rotation rate) versus change in atmospheric geopotential height fields and astronomical parameters were analyzed for the years 1962-2006. This... Variation in length of day of the Earth (LOD, equivalent to the Earth's rotation rate) versus change in atmospheric geopotential height fields and astronomical parameters were analyzed for the years 1962-2006. This revealed that there is a 27.3-day and an average 13.6-day periodic oscillation in LOD and atmospheric pressure fields following lunar revolution around the Earth. Accompanying the alternating change in celestial gravitation forcing on the Earth and its atmosphere, the Earth's LOD changes from minimum to maximum, then to minimum, and the atmospheric geopotential height fields in the tropics oscillate from low to high, then to low. The 27.3-day and average 13.6-day periodic atmospheric oscillation in the tropics is proposed to be a type of strong atmospheric tide, excited by celestial gravitation forcing. A formula for a Tidal Index was derived to estimate the strength of the celestial gravitation forcing, and a high degree of correlation was found between the Tidal Index determined by astronomical parameters, LOD, and atmospheric geopotential height. The reason for the atmospheric tide is periodic departure of the lunar orbit from the celestial equator during lunar revolution around the Earth. The alternating asymmetric change in celestial gravitation forcing on the Earth and its atmosphere produces a "modulation" to the change in the Earth's LOD and atmospheric pressure fields. 展开更多
关键词 atmospheric tide intraseasonal atmospheric oscillation length of day (LOD) lunar declination astro-meteorology
下载PDF
High Resolution Global Modeling of the Atmospheric Circulation 被引量:1
4
作者 Kevin HAMILTON 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第6期842-856,共15页
An informal review is presented of recent developments in numerical simulation of the global atmospheric circulation with very fine numerical resolution models, The focus is on results obtained recently with versions ... An informal review is presented of recent developments in numerical simulation of the global atmospheric circulation with very fine numerical resolution models, The focus is on results obtained recently with versions of the GFDL SKYHI model and the Atmospheric Model for the Earth Simulator (AFES) global atmospheric models. These models have been run with effective horizontal grid resolution of -10-40 km and fine vertical resolution. The results presented demonstrate the utility of such models for the study of a diverse range of phenomena, Specifically the models are shown to simulate the development of tropical cyclones with peak winds and minimum central pressures comparable to those of the most intense hurricanes actually observed, More fundamentally, the spectrum of energy content in the mesoscale in the flow can be reproduced by these models down to near the smallest explicitly-resolved horizontal scales, in the middle atmosphere it is shown that increasing horizontal resolution can lead to significantly improved overall simulation of the global-scale circulation, The application of the models to two specific problems requiring very fine resolution global will be discussed, The spatial and temporal variability of the vertical eddy flux of zonal momentum associated with gravity waves near the tropopause is evaluated in the very fine resolution AFES model, This is a subject of great importance for understanding and modelling the flow in the middle atmosphere, Then the simulation of the small scale variations of the semidiurnal surface pressure oscillation is analyzed, and the signature of significant topographic modulation of the semidiurnal atmospheric tide is identified. 展开更多
关键词 general circulation model mesoscale simulation gravity waves atmospheric tides
下载PDF
Atmospheric acceleration and Earth-expansion deceleration of the Earth rotation 被引量:2
5
作者 Wenbin Shen Sung-Ho Na 《Geodesy and Geodynamics》 2017年第6期421-426,共6页
Previous studies suggest that tidal friction gives rise to the secular deceleration of the Earth rotation by a quantity of about 2.25 ms/cy. Here we just consider additional contributions to the secular Earth rotation... Previous studies suggest that tidal friction gives rise to the secular deceleration of the Earth rotation by a quantity of about 2.25 ms/cy. Here we just consider additional contributions to the secular Earth rotation deceleration. Atmospheric solar semi-diurnal tide has a small amplitude and certain amount of phase lead. This periodic global air-mass excess distribution exerts a quasi-constant torque to accelerate the Earth's spin rotation. Using an updated atmospheric tide model, we re-estimate the amounts of this atmospheric acceleration torque and corresponding energy input, of which the associated change rate in LOD(length of day) is-0.1 ms/cy. In another aspect, evidences from space-geodesy and sea level rise observations suggest that Earth expands at a rate of 0.35 mm/yr in recent decades, which gives rise to the increase of LOD at rate of 1.0 ms/cy. Hence, if the previous estimate due to the tidal friction is correct, the secular Earth rotation deceleration due to tidal friction and Earth expansion should be 3.15 ms/cy. 展开更多
关键词 Atmosphere tides Earth expansion Earth rotation change
下载PDF
Analysis and comparison of the tidal gravity observations obtained with LCR-ET20 spring gravimeter
6
作者 孙和平 陈晓东 +1 位作者 刘明 周百力 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2002年第5期533-539,共7页
Based on the tide gravity observations recorded with LCR-ET20 spring gravimeter at Wuhan international fundamental tidal gravity station, the characteristics of ET20 and atmospheric and oceanic gravity signals are stu... Based on the tide gravity observations recorded with LCR-ET20 spring gravimeter at Wuhan international fundamental tidal gravity station, the characteristics of ET20 and atmospheric and oceanic gravity signals are studied systematically by using international standard data pre-processing and analysis methods and by comparing the results with those obtained by superconducting gravimeter (SG) at the same station. The numerical results indicate that the identical tidal gravity parameters are the same as those with the SG, the instrument can be effectively used to record temporal change of the gravity field, though the ET20 accuracy is one order lower than that of the SG, and has the large drift induced by the spring creep character. 展开更多
关键词 spring and superconducting gravimeters influence of the atmospheric and oceanic tides
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部