In order to optimize the atmospheric tower overhead low-temperature system,the physical parameters,multiphase composition,aqueous dew point temperature,and ammonium salt crystallization temperature are simulated with ...In order to optimize the atmospheric tower overhead low-temperature system,the physical parameters,multiphase composition,aqueous dew point temperature,and ammonium salt crystallization temperature are simulated with process simulation software.The temperature distribution in overhead heat exchanger is calculated by heat transfer calculation.The special parts with elbows near the inlet and outlet of heat exchanger are studied by fluid field analysis.Results indicate that under current operating conditions,the aqueous dew point temperature and initial crystallization temperature of NH4Cl are 91°C and 128°C,respectively.Ammonium salt appears in the distillation tower and liquid water occurs in heat exchanger tubes,in which the dew point induced corrosion is the most direct factor for heat exchanger corrosion.In the heat exchanger,condensate water appearing in the area 2.7 meters away from the bundle inlet can give rise to corrosion risk under the moist NH4Cl and high concentration of acidic solution circumstance.For the pipes and elbows located near the inlet and the outlet of heat exchanger,the flow field presents an unsymmetrical distribution.High risk areas are mainly concentrated on the external bend of elbows where the liquid water concentration is higher.The coupling of simulation methods established thereby is approved as an effective way to evaluate the corrosion risk in the atmospheric column overhead system and can provide a scientific basis for corrosion control.展开更多
In the past 30 years,signed directed graph(SDG) ,one of the qualitative simulation technologies,has been widely applied for chemical fault diagnosis.However,SDG based fault diagnosis,as any other qualitative method,ha...In the past 30 years,signed directed graph(SDG) ,one of the qualitative simulation technologies,has been widely applied for chemical fault diagnosis.However,SDG based fault diagnosis,as any other qualitative method,has poor diagnostic resolution.In this paper,a new method that combines SDG with qualitative trend analysis(QTA) is presented to improve the resolution.In the method,a bidirectional inference algorithm based on assumption and verification is used to find all the possible fault causes and their corresponding consistent paths in the SDG model.Then an improved QTA algorithm is used to extract and analyze the trends of nodes on the consis-tent paths found in the previous step.New consistency rules based on qualitative trends are used to find the real causes from the candidate causes.The resolution can be improved.This method combines the completeness feature of SDG with the good diagnostic resolution feature of QTA.The implementation of SDG-QTA based fault diagno-sis is done using the integrated SDG modeling,inference and post-processing software platform.Its application is illustrated on an atmospheric distillation tower unit of a simulation platform.The result shows its good applicability and efficiency.展开更多
基金This research was financially supported by the scientific research project through the SINOPEC Science and Technology Division(Contract No.318021-8).
文摘In order to optimize the atmospheric tower overhead low-temperature system,the physical parameters,multiphase composition,aqueous dew point temperature,and ammonium salt crystallization temperature are simulated with process simulation software.The temperature distribution in overhead heat exchanger is calculated by heat transfer calculation.The special parts with elbows near the inlet and outlet of heat exchanger are studied by fluid field analysis.Results indicate that under current operating conditions,the aqueous dew point temperature and initial crystallization temperature of NH4Cl are 91°C and 128°C,respectively.Ammonium salt appears in the distillation tower and liquid water occurs in heat exchanger tubes,in which the dew point induced corrosion is the most direct factor for heat exchanger corrosion.In the heat exchanger,condensate water appearing in the area 2.7 meters away from the bundle inlet can give rise to corrosion risk under the moist NH4Cl and high concentration of acidic solution circumstance.For the pipes and elbows located near the inlet and the outlet of heat exchanger,the flow field presents an unsymmetrical distribution.High risk areas are mainly concentrated on the external bend of elbows where the liquid water concentration is higher.The coupling of simulation methods established thereby is approved as an effective way to evaluate the corrosion risk in the atmospheric column overhead system and can provide a scientific basis for corrosion control.
基金Supported by the Science and Technological Tackling Project of Heilongjiang Province(GB06A106)
文摘In the past 30 years,signed directed graph(SDG) ,one of the qualitative simulation technologies,has been widely applied for chemical fault diagnosis.However,SDG based fault diagnosis,as any other qualitative method,has poor diagnostic resolution.In this paper,a new method that combines SDG with qualitative trend analysis(QTA) is presented to improve the resolution.In the method,a bidirectional inference algorithm based on assumption and verification is used to find all the possible fault causes and their corresponding consistent paths in the SDG model.Then an improved QTA algorithm is used to extract and analyze the trends of nodes on the consis-tent paths found in the previous step.New consistency rules based on qualitative trends are used to find the real causes from the candidate causes.The resolution can be improved.This method combines the completeness feature of SDG with the good diagnostic resolution feature of QTA.The implementation of SDG-QTA based fault diagno-sis is done using the integrated SDG modeling,inference and post-processing software platform.Its application is illustrated on an atmospheric distillation tower unit of a simulation platform.The result shows its good applicability and efficiency.