Based on data of PM2.5 hourly concentration and HYSPLIT model backward trajectory in coastal cities of Fujian Province during January 25 -26, 2014, a typical regional pollution process affecting Fujian from the north ...Based on data of PM2.5 hourly concentration and HYSPLIT model backward trajectory in coastal cities of Fujian Province during January 25 -26, 2014, a typical regional pollution process affecting Fujian from the north to the south and the east to the west on January 26 was investiga- ted. Taking Fuzhou as an example, based on weather situation on the ground and at high altitudes as well as corresponding meteorological data such as wind direction, wind velocity, and visibility, the changes of meteorological elements before, during and after the pollution were compared. Based on the V-3θ atmospheric vertical structure diagrams, the weather reasons for the generation, maintaining and dissipation of the pollution were discussed. The results indicated that the regional pollution was transported from the northeast to the southwest. The northeasterly air flow in front of the cold ridge strengthened and moved toward the east, so that the pollutant from the north affected Fujian form the north to the south and from the east to the west. As a result, there was a dramatic increase of pollutant concentration, rapid drop of visibility, and deterioration of air quality in the affected areas. The heavy pollution process featured high-speed transport and short-time generation. The air quality changed from good state to heavy pollution in just 3 -4 hours. The maximum of IAQIpM2.5 reached 280. The whole pollution process lasted for 14 hours. Solar radiation had been deeply affected by aerosol clouds, so that atmospheric stratification was extremely stable. Along with the eastward movement of cold high pressure into the sea, the dominant wind direction near the ground changed from the northeast to the east, so that the source of the pollutant was cut off , and air quality quickly turned well. The changes of atmospheric vertical structure indicated that the high inversion layer and clouds near 700 hPa kept lower air clean and blocked upper pollution transport. The later sudden increase of wind speed and strengthening of atmospheric mechanical turbu- lent destroyed inversion layer, so that the upper pollutants invaded air near the ground rapidly. During the period of high pollution, the isothermal layer (aerosol clouds) leaded to decrease of wind speed, and the atmosphere became more stable. The pollution ended until the wind field changed.展开更多
The local climate and atmospheric circulation pattern exert a clear influence on the atmospheric boundary layer (ABL) formation and development in Northwest China. In this paper, we use field observational data to a...The local climate and atmospheric circulation pattern exert a clear influence on the atmospheric boundary layer (ABL) formation and development in Northwest China. In this paper, we use field observational data to analyze the distribution and characteristics of the ABL in the extremely arid desert in Dunhuang, Northwest China. These data show that the daytime convective boundary layer and night time stable boundary layer in this area extend to higher altitudes than in other areas. In the night time, the stable boundary layer exceeds 900 m in altitude and can sometimes peak at 1750 m, above which the residual layer may reach up to about 4000 m. The daytime convective boundary layer develops rapidly after entering the residual layer, and exceeds 4000 m in thickness. The results show that the deep convective boundary layer in the daytime is a pre-requisite for maintaining the deep residual mixed layer in the night time. Meanwhile, the deep residual mixed layer in the night time provides favorable thermal conditions for the development of the convective boundary layer in the daytime. The prolonged periods of clear weather that often occurs in this area allow the cumulative effect of the atmospheric residual layer to develop fully, which creates thermal conditions beneficial for the growth of the daytime convective boundary layer. At the same time, the land surface process and atmospheric motion within the surface layer in this area also provide helpful support for forming the particular structure of the thermal ABL. High surface temperature is clearly the powerful external thermal forcing for the deep convective boundary layer. Strong sensible heat flux in the surface layer provides the required energy. Highly convective atmosphere and strong turbulence provide the necessary dynamic conditions, and the accumulative effect of the residual layer provides a favorable thermal environment.展开更多
To improve the level of meteorological service for the Oilfield region in the Taklimakan Desert, the Urumqi Institute of Desert Meteorology of the China Meteorological Administration (CMA) conducted a detection expe...To improve the level of meteorological service for the Oilfield region in the Taklimakan Desert, the Urumqi Institute of Desert Meteorology of the China Meteorological Administration (CMA) conducted a detection experiment by means of wind profiling radar (WPR) in Tazhong Oilfield region of Xinjiang, China in July 2010. By using the wind profiler data obtained during the rainfall process on 27 July, this paper analyzed the wind field fea- tures and some related scientific issues of this weather event. The results indicated that: (1) wind profiler data had high temporal resolution and vertical spatial resolution, and could be used to analyze detailed vertical structures of rainfall processes and the characteristics of meso-scale systems. Before and after the rain event on 27 July, the wind field showed multi-layer vertical structures, having an obvious meso-scale wind shear line and three airflows from different directions, speeding up the motion of updraft convergence in the lower atmosphere. Besides, the wind directions before and after the rainfall changed inversely with increasing height. Before the rain, the winds blew clockwise, but after the onset of the rain, the wind directions became counterclockwise mainly; (2) the temperature advection derived from wind profiler data can reproduce the characteristics of low-level thermodynamic evolution in the process of rainfall, which is capable to reflect the variation trend of hydrostatic stability in the atmosphere. In the early stage of the precipitation on 27 July, the lower atmosphere was mainly affected by warm advection which had accumulated unstable energy for the rainfall event and was beneficial for the occurrence of updraft motion and precipitation; (3) the "large-value zone" of the radar reflectivity factor Z was virtually consistent with the onset and end of the rainfall, the height for the formation of rain cloud particles, and precipitation intensity. The reflectivity factor Z during this event varied approximately in the range of 18-38 dBZ and the rain droplets formed mainly at the layer of 3,800-4,500 m.展开更多
文摘Based on data of PM2.5 hourly concentration and HYSPLIT model backward trajectory in coastal cities of Fujian Province during January 25 -26, 2014, a typical regional pollution process affecting Fujian from the north to the south and the east to the west on January 26 was investiga- ted. Taking Fuzhou as an example, based on weather situation on the ground and at high altitudes as well as corresponding meteorological data such as wind direction, wind velocity, and visibility, the changes of meteorological elements before, during and after the pollution were compared. Based on the V-3θ atmospheric vertical structure diagrams, the weather reasons for the generation, maintaining and dissipation of the pollution were discussed. The results indicated that the regional pollution was transported from the northeast to the southwest. The northeasterly air flow in front of the cold ridge strengthened and moved toward the east, so that the pollutant from the north affected Fujian form the north to the south and from the east to the west. As a result, there was a dramatic increase of pollutant concentration, rapid drop of visibility, and deterioration of air quality in the affected areas. The heavy pollution process featured high-speed transport and short-time generation. The air quality changed from good state to heavy pollution in just 3 -4 hours. The maximum of IAQIpM2.5 reached 280. The whole pollution process lasted for 14 hours. Solar radiation had been deeply affected by aerosol clouds, so that atmospheric stratification was extremely stable. Along with the eastward movement of cold high pressure into the sea, the dominant wind direction near the ground changed from the northeast to the east, so that the source of the pollutant was cut off , and air quality quickly turned well. The changes of atmospheric vertical structure indicated that the high inversion layer and clouds near 700 hPa kept lower air clean and blocked upper pollution transport. The later sudden increase of wind speed and strengthening of atmospheric mechanical turbu- lent destroyed inversion layer, so that the upper pollutants invaded air near the ground rapidly. During the period of high pollution, the isothermal layer (aerosol clouds) leaded to decrease of wind speed, and the atmosphere became more stable. The pollution ended until the wind field changed.
基金Supported by the National Science Foundation of China under Grant Nos. 40575006 and 40830957the National Key Program for Developing Basic Sciences under Grant No. G1998040906
文摘The local climate and atmospheric circulation pattern exert a clear influence on the atmospheric boundary layer (ABL) formation and development in Northwest China. In this paper, we use field observational data to analyze the distribution and characteristics of the ABL in the extremely arid desert in Dunhuang, Northwest China. These data show that the daytime convective boundary layer and night time stable boundary layer in this area extend to higher altitudes than in other areas. In the night time, the stable boundary layer exceeds 900 m in altitude and can sometimes peak at 1750 m, above which the residual layer may reach up to about 4000 m. The daytime convective boundary layer develops rapidly after entering the residual layer, and exceeds 4000 m in thickness. The results show that the deep convective boundary layer in the daytime is a pre-requisite for maintaining the deep residual mixed layer in the night time. Meanwhile, the deep residual mixed layer in the night time provides favorable thermal conditions for the development of the convective boundary layer in the daytime. The prolonged periods of clear weather that often occurs in this area allow the cumulative effect of the atmospheric residual layer to develop fully, which creates thermal conditions beneficial for the growth of the daytime convective boundary layer. At the same time, the land surface process and atmospheric motion within the surface layer in this area also provide helpful support for forming the particular structure of the thermal ABL. High surface temperature is clearly the powerful external thermal forcing for the deep convective boundary layer. Strong sensible heat flux in the surface layer provides the required energy. Highly convective atmosphere and strong turbulence provide the necessary dynamic conditions, and the accumulative effect of the residual layer provides a favorable thermal environment.
基金co-funded by the National Basic Research Program of China(2010CB951001)the Research Subject with the Support of National Science and Technology(2012BA C23B01)the Central Scientific Research and Operational Project(IDM201002)
文摘To improve the level of meteorological service for the Oilfield region in the Taklimakan Desert, the Urumqi Institute of Desert Meteorology of the China Meteorological Administration (CMA) conducted a detection experiment by means of wind profiling radar (WPR) in Tazhong Oilfield region of Xinjiang, China in July 2010. By using the wind profiler data obtained during the rainfall process on 27 July, this paper analyzed the wind field fea- tures and some related scientific issues of this weather event. The results indicated that: (1) wind profiler data had high temporal resolution and vertical spatial resolution, and could be used to analyze detailed vertical structures of rainfall processes and the characteristics of meso-scale systems. Before and after the rain event on 27 July, the wind field showed multi-layer vertical structures, having an obvious meso-scale wind shear line and three airflows from different directions, speeding up the motion of updraft convergence in the lower atmosphere. Besides, the wind directions before and after the rainfall changed inversely with increasing height. Before the rain, the winds blew clockwise, but after the onset of the rain, the wind directions became counterclockwise mainly; (2) the temperature advection derived from wind profiler data can reproduce the characteristics of low-level thermodynamic evolution in the process of rainfall, which is capable to reflect the variation trend of hydrostatic stability in the atmosphere. In the early stage of the precipitation on 27 July, the lower atmosphere was mainly affected by warm advection which had accumulated unstable energy for the rainfall event and was beneficial for the occurrence of updraft motion and precipitation; (3) the "large-value zone" of the radar reflectivity factor Z was virtually consistent with the onset and end of the rainfall, the height for the formation of rain cloud particles, and precipitation intensity. The reflectivity factor Z during this event varied approximately in the range of 18-38 dBZ and the rain droplets formed mainly at the layer of 3,800-4,500 m.