A new electrochemical strategy for the atom transfer radical addition(ATRA)of polychloroalkanes across olefins has been realized by the synergism of paired electrolysis and halogen bonding activation.Notably,readily a...A new electrochemical strategy for the atom transfer radical addition(ATRA)of polychloroalkanes across olefins has been realized by the synergism of paired electrolysis and halogen bonding activation.Notably,readily accessible 4,4-di-tert-butyl bipyridine(dtbpy),acting as a halogen bonding acceptor,shifted the reduction potential of C—Cl bonds positively by 110 mV.The decreased operating potential leads to a wide substrate scope and excellent functional group compatibility.A diverse array of terminal and internal alkenes such as(hetero)aryl olefins,unactive aliphatic olefins,and natural products and drugs-derived olefins were well compatible.展开更多
基金the National Natural Science Foundation of China(21871019,21901263,22171015)Beijing Municipal Education Committee Project(KZ202110005003,KM202110005006)Beijing Natural Science Foundation(2222003).
文摘A new electrochemical strategy for the atom transfer radical addition(ATRA)of polychloroalkanes across olefins has been realized by the synergism of paired electrolysis and halogen bonding activation.Notably,readily accessible 4,4-di-tert-butyl bipyridine(dtbpy),acting as a halogen bonding acceptor,shifted the reduction potential of C—Cl bonds positively by 110 mV.The decreased operating potential leads to a wide substrate scope and excellent functional group compatibility.A diverse array of terminal and internal alkenes such as(hetero)aryl olefins,unactive aliphatic olefins,and natural products and drugs-derived olefins were well compatible.