On-line ion-exchange separation and preconcentration were combined with flow-injection hydride generation atomic absorption spectrometry (HGAAS) to determine ultra-trace amounts of antimony in water samples. Antimony(...On-line ion-exchange separation and preconcentration were combined with flow-injection hydride generation atomic absorption spectrometry (HGAAS) to determine ultra-trace amounts of antimony in water samples. Antimony(Ⅲ) was preconcentrated on a micro-column packed with CPG-8Q chelating ion-exchanger using time-based sample loading and eluted by 4 mol l^(-1) HCl directly into the hydride generation AAS system. A detection limit (3σ) of 0.0015μg l^(-1) Sb(Ⅲ) was obtained on the basis of a 20 fold enrichment and with a sampling frequency of 60h^(-1). The precision was 1.0% r.s.d.(n=11) at the 0.5μg l^(-1) Sb(Ⅲ) level. Recoveries for the analysis of antimony in tap water, snow water and sea water samples were in the range 97-102%.展开更多
文摘On-line ion-exchange separation and preconcentration were combined with flow-injection hydride generation atomic absorption spectrometry (HGAAS) to determine ultra-trace amounts of antimony in water samples. Antimony(Ⅲ) was preconcentrated on a micro-column packed with CPG-8Q chelating ion-exchanger using time-based sample loading and eluted by 4 mol l^(-1) HCl directly into the hydride generation AAS system. A detection limit (3σ) of 0.0015μg l^(-1) Sb(Ⅲ) was obtained on the basis of a 20 fold enrichment and with a sampling frequency of 60h^(-1). The precision was 1.0% r.s.d.(n=11) at the 0.5μg l^(-1) Sb(Ⅲ) level. Recoveries for the analysis of antimony in tap water, snow water and sea water samples were in the range 97-102%.