Using the classical ensemble method, we investigate nonsequential double ionization (NSDI) of diatomic molecules by elliptically polarized laser pulses. The results show that the ellipticity of the laser field has a...Using the classical ensemble method, we investigate nonsequential double ionization (NSDI) of diatomic molecules by elliptically polarized laser pulses. The results show that the ellipticity of the laser field has a strong suppression effect on NSDI probabilities both in parallel and perpendicular alignments. The double ionization (DI) channel is commonly dominated by NSDI, and the NSDI channel changes with ellipticity. As ellipticity increases, more and more NSDIs occur through recollision excitation with subsequent field ionization (RESI). Moreover, like the case of linear polarization, the two electrons involved in NSDI for perpendicularly aligned molecules are more likely to emit into the opposite hemispheres as compared to the case of parallel alignment. Additionally, this alignment effect increases as ellipticity increases.展开更多
A classical ensemble method is used to investigate nonsequential double ionization(NSDI) of Ar atoms irradiated by linearly polarized few-cycle laser pulses. The correlated-electron momentum distribution(CMD) exhi...A classical ensemble method is used to investigate nonsequential double ionization(NSDI) of Ar atoms irradiated by linearly polarized few-cycle laser pulses. The correlated-electron momentum distribution(CMD) exhibits a strong dependence on the carrier-envelope phase(CEP). When the pulse duration is four cycles, the CMD shows a cross-like structure, which is consistent with experimental results. The CEP dependence is more notable when the laser pulse duration is decreased to two cycles and a special L-shaped structure appears in CMD. Recollision time of returning electrons greatly depends on CEP, which plays a significant role in accounting for the appearance of this structure.展开更多
基金Project supported by the Fund for Excellent Youths of Education Department of Hubei Province,China(Grant No.Q20133001)the Natural Science Foundation of Hubei Province,China(Grant No.2013CFB015)the Special Fund of Theoretical Physics,China(Grant No.11347189)
文摘Using the classical ensemble method, we investigate nonsequential double ionization (NSDI) of diatomic molecules by elliptically polarized laser pulses. The results show that the ellipticity of the laser field has a strong suppression effect on NSDI probabilities both in parallel and perpendicular alignments. The double ionization (DI) channel is commonly dominated by NSDI, and the NSDI channel changes with ellipticity. As ellipticity increases, more and more NSDIs occur through recollision excitation with subsequent field ionization (RESI). Moreover, like the case of linear polarization, the two electrons involved in NSDI for perpendicularly aligned molecules are more likely to emit into the opposite hemispheres as compared to the case of parallel alignment. Additionally, this alignment effect increases as ellipticity increases.
基金supported by the National Natural Science Foundation of China(No.61275103)the Natural Science Foundation of Shanghai(No.18ZR1413600)
文摘A classical ensemble method is used to investigate nonsequential double ionization(NSDI) of Ar atoms irradiated by linearly polarized few-cycle laser pulses. The correlated-electron momentum distribution(CMD) exhibits a strong dependence on the carrier-envelope phase(CEP). When the pulse duration is four cycles, the CMD shows a cross-like structure, which is consistent with experimental results. The CEP dependence is more notable when the laser pulse duration is decreased to two cycles and a special L-shaped structure appears in CMD. Recollision time of returning electrons greatly depends on CEP, which plays a significant role in accounting for the appearance of this structure.
文摘本文实验测量了少周期飞秒激光场下惰性气体Ne原子非顺序双电离引起的Ne^(2+)离子动量分布,发现该分布强烈依赖于激光场的载波-包络相位(Carrier-Envelope Phase,CEP),在某些CEP条件下呈现出明显不对称的双峰结构.半经典理论计算可以定性地重现实验结果.理论分析表明,二价离子的不对称动量分布来自于非顺序双电离过程中碰撞直接电离(Recollision-Impact-Ionization,RII)与碰撞-激发电离(Recollision-Excitation and Subsequent Ionization,RESI)两个通道的贡献,其中不对称双峰结构来自于RII通道,而RESI通道影响的是低动量部分,导致双峰结构变平.RII通道中产生的Ne^(2+)离子动量分布对CEP有较强的依赖性,而RESI通道中Ne^(2+)离子动量分布随CEP的变化不明显.进一步的计算表明,离子实库仑势在非顺序双电离过程中起到非常重要的作用,它将引起RESI通道产量增大.