The Al^+ ion optical clock is a very promising optical frequency standard candidate due to its extremely small black-body radiation shift. It has been successfully demonstrated with the indirect cooled, quantum-logic...The Al^+ ion optical clock is a very promising optical frequency standard candidate due to its extremely small black-body radiation shift. It has been successfully demonstrated with the indirect cooled, quantum-logic-based spectroscopy technique. Its accuracy is limited by second-order Doppler shift, and its stability is limited by the number of ions that can be probed in quantum logic processing. We propose a direct laser cooling scheme of AI+ ion optical clocks where both the stability and accuracy of the clocks are greatly improved. In the proposed scheme, two Al^+ traps are utilized. The first trap is used to trap a large number of Al^+ ions to improve the stability of the clock laser, while the second trap is used to trap a single Al^+ ion to provide the ultimate accuracy. Both traps are cooled with a continuous wave 167nm laser. The expected clock laser stability can reach 9.0 × 10^-17/√τ. For the second trap, in addition to 167nm laser Doppler cooling, a second stage pulsed 234nm two-photon cooling laser is utilized to further improve the accuracy of the clock laser. The total systematic uncertainty can be reduced to about 1 × 10^-18. The proposed Al^+ ion optical clock has the potential to become the most accurate and stable optical clock.展开更多
We designed, assembled, and tested a reliable laser system for ^(87)Rb cold atom fountain clocks. The laser system is divided into four modules according to function, which are convenient for installing, adjusting, ma...We designed, assembled, and tested a reliable laser system for ^(87)Rb cold atom fountain clocks. The laser system is divided into four modules according to function, which are convenient for installing, adjusting, maintaining, and replacing of the modules. In each functional module, all optical components are fixed on a baseplate with glue and screws, ensuring the system's structural stability. Mechanical stability was verified in a 6.11g RMS randomvibration test, where the change in output power before and after vibration was less than 5%. Thermal stability was realized by optimizing of the structure and appropriate selection of component materials of the modules through thermal simulation. In the laser splitting and output module, the change in laser power was less than 20% for each fiber in thermal cycles from 5℃ to 43℃. Finally,the functionality of the laser system was verified for a rubidium fountain clock.展开更多
Using modularized components, we have built a miniaturized optical system for 87Rb atomic fountain clock that is fitted on an 80 cm × 60 cm optical breadboard. Compared with the conventional optical setup on the ...Using modularized components, we have built a miniaturized optical system for 87Rb atomic fountain clock that is fitted on an 80 cm × 60 cm optical breadboard. Compared with the conventional optical setup on the table, our system is more compact, more robust and miniaturized. Taking advantage of this system, laser beams are transmitted through eight optical fibre patch cords from the optical breadboard to an ultra high vacuum system. This optical setup has operated for five months in our fountain system and required no alignment.展开更多
Sideband cooling is a key technique for improving the performance of optical atomic clocks by preparing cold atoms and single ions into the ground vibrational state.In this work,we demonstrate detailed experimental re...Sideband cooling is a key technique for improving the performance of optical atomic clocks by preparing cold atoms and single ions into the ground vibrational state.In this work,we demonstrate detailed experimental research on pulsed Raman sideband cooling in a 171 Yb optical lattice clock.A sequence comprised of interleaved 578 nm cooling pulses resonant on the 1st-order red sideband and 1388 nm repumping pulses is carried out to transfer atoms into the motional ground state.We successfully decrease the axial temperature of atoms in the lattice from 6.5μK to less than 0.8μK in the trap depth of 24μK,corresponding to an average axial motional quantum number<nz><0.03.Rabi oscillation spectroscopy is measured to evaluate the effect of sideband cooling on inhomogeneous excitation.The maximum excitation fraction is increased from 0.8 to 0.86,indicating an enhancement in the quantum coherence of the ensemble.Our work will contribute to improving the instability and uncertainty of Yb lattice clocks.展开更多
This paper reports an experiment on laser cooling of STRb atoms in pulsed diffuse light, which is the key step towards a compact cold atom clock. It deduces an empirical formula to simulate the pulse cooling process b...This paper reports an experiment on laser cooling of STRb atoms in pulsed diffuse light, which is the key step towards a compact cold atom clock. It deduces an empirical formula to simulate the pulse cooling process based on the loading of cold atoms in cooling time and the loss in the dead time, which is in agreement with the experimental data. The formula gives a reference to select the parameters for the cold atom clock.展开更多
We investigate experimentally and numerically the quantitative dependence of characteristics of a low-velocity intensity source(LVIS) of atomic beam on light parameters, especially the polarization of cooling laser ...We investigate experimentally and numerically the quantitative dependence of characteristics of a low-velocity intensity source(LVIS) of atomic beam on light parameters, especially the polarization of cooling laser along the atomic beam axis(pushing beam). By changing the polarization of the pushing beam, the longitudinal mean velocity of a rubidium atomic beam can be tuned continuously from 10 to 20 m/s and the flux can range from 3 × 10^-8 to 1 × 10^-9 atoms/s, corresponding to the maximum sensitivity of the velocity with respect to the polarization angle of 20(m/s)/rad and the mean sensitivity of flux of 1.2 × 10^-9(atoms/s)/rad. The mechanism is explained with a Monte-Carlo based numerical simulation method, which shows a qualitative agreement with the experimental result. This is also a demonstration of a method enabling the fast and continuous modulation of a low-velocity intense source of cold atomic beam on the velocity or flux,which can be used in many fields, like the development of a cold atomic beam interferometer and atom lithography.展开更多
We develop an integrated integrating sphere cold atom clock(ISCAC), which mainly consists of physical package,laser system, microwave source, and electronics.This compact system is more stable and reliable than the pr...We develop an integrated integrating sphere cold atom clock(ISCAC), which mainly consists of physical package,laser system, microwave source, and electronics.This compact system is more stable and reliable than the previous version.The experimental results show that the short term frequency stability of 5.4×10^-13τ-1/2 and 2.9× 10^-15 at 1-day integrating time are achieved.展开更多
We demonstrate an experimental setup for the production of a beam source of cold 87Rb atoms. The atoms are extracted from a trapped cold atomic cloud in an unbalanced three-dimensional magneto-optical trap. Via a radi...We demonstrate an experimental setup for the production of a beam source of cold 87Rb atoms. The atoms are extracted from a trapped cold atomic cloud in an unbalanced three-dimensional magneto-optical trap. Via a radiation pressure difference generated by a specially designed leak tunnel along one trapping laser beam, the atoms are pushed out continuously with low velocities and a high flux. The most-probable velocity in the beam is varied from 9 m/s to 19 m/s by varying the detuning of the trapping laser beams in the magneto-optical trap and the flux can be tuned up to 4× 10^9 s-1 by increasing the intensity of the trapping beams. We also present a simple model for describing the dependence of the beam performance on the magneto optical trap trapping laser intensity and the detuning.展开更多
An optical atomic clock with 171yb atoms is devised and tested. By using a two-stage Doppler cooling technique, the 171Yb atoms are cooled down to a temperature of 6 ± 3 μK, which is close to the Doppler limit. ...An optical atomic clock with 171yb atoms is devised and tested. By using a two-stage Doppler cooling technique, the 171Yb atoms are cooled down to a temperature of 6 ± 3 μK, which is close to the Doppler limit. Then, the cold 171Yb atoms are loaded into a one-dimensional optical lattice with a wavelength of 759 nm in the Lamb-Dicke regime. Furthermore, these cold 171yb atoms are excited from the ground-state 1S0 to the excited-state 3P0 by a clock laser with a wavelength of 578 nm. Finally, the 1S0-3P0 clock-transition spectrum of these 171yb atoms is obtained by measuring the dependence of the population of the ground-state 1 S0 upon the clock-laser detuning.展开更多
When the cold atom clock operates in microgravity around the near-earth orbit, its performance will be affected by the fluctuation of magnetic field. A strategy is proposed to suppress the fluctuation of magnetic fiel...When the cold atom clock operates in microgravity around the near-earth orbit, its performance will be affected by the fluctuation of magnetic field. A strategy is proposed to suppress the fluctuation of magnetic field by additional coils, whose current is changed accordingly to compensate the magnetic fluctuation by the linear and incremental compensation. The flight model of the cold atom clock is tested in a simulated orbital magnetic environment and the magnetic field fluctuation in the Ramsey cavity is reduced from 17 nT to 2 nT, which implied the uncertainty due to the second order Zeeman shift is reduced to be less than 2×10^(-16). In addition, utilizing the compensation, the magnetic field in the trapping zone can be suppressed from 7.5 μT to less than 0.3 μT to meet the magnetic field requirement of polarization gradients cooling of atoms.展开更多
The optical atomic clocks have the potential to transform global timekeeping,relying on the state-of-the-art accuracy and stability,and greatly improve the measurement precision for a wide range of scientific and tech...The optical atomic clocks have the potential to transform global timekeeping,relying on the state-of-the-art accuracy and stability,and greatly improve the measurement precision for a wide range of scientific and technological applications.Herein we report on the development of the optical clock based on 171Yb atoms confined in an optical lattice.A minimum width of 1.92-Hz Rabi spectra has been obtained with a new 578-nm clock interrogation laser.The in-loop fractional instability of the 171Yb clock reaches 9.1×10-18 after an averaging over a time of 2.0×104 s.By synchronous comparison between two clocks,we demonstrate that our 171Yb optical lattice clock achieves a fractional instability of 4.60×10-16/√τ.展开更多
This paper studies a miniature low power consumption laser-pumped atom vapour cell clock scheme. Pumping ^87Rb with a vertical cavity surface emitting laser diode pump and locking the laser frequency on a Doppler-broa...This paper studies a miniature low power consumption laser-pumped atom vapour cell clock scheme. Pumping ^87Rb with a vertical cavity surface emitting laser diode pump and locking the laser frequency on a Doppler-broadened spectral line, it records a 5 × 10^-11τ-1/2 (τ〈500 s) frequency stability with a table-top system in a primary experiment. The study reveals that the evaluated scheme is at the level of 2.7 watts power consumption, 90 cm^3 volume and 10^-12τ-1/2 short-term frequency stability.展开更多
基金Supported by the National Basic Research Program of China under Grant No 2012CB821300the National Natural Science Foundation of China under Grant Nos 91336213,11304109,91536116 and 11174095the Program for New Century Excellent Talents by the Ministry of Education under Grant No NCET-11-0176
文摘The Al^+ ion optical clock is a very promising optical frequency standard candidate due to its extremely small black-body radiation shift. It has been successfully demonstrated with the indirect cooled, quantum-logic-based spectroscopy technique. Its accuracy is limited by second-order Doppler shift, and its stability is limited by the number of ions that can be probed in quantum logic processing. We propose a direct laser cooling scheme of AI+ ion optical clocks where both the stability and accuracy of the clocks are greatly improved. In the proposed scheme, two Al^+ traps are utilized. The first trap is used to trap a large number of Al^+ ions to improve the stability of the clock laser, while the second trap is used to trap a single Al^+ ion to provide the ultimate accuracy. Both traps are cooled with a continuous wave 167nm laser. The expected clock laser stability can reach 9.0 × 10^-17/√τ. For the second trap, in addition to 167nm laser Doppler cooling, a second stage pulsed 234nm two-photon cooling laser is utilized to further improve the accuracy of the clock laser. The total systematic uncertainty can be reduced to about 1 × 10^-18. The proposed Al^+ ion optical clock has the potential to become the most accurate and stable optical clock.
文摘We designed, assembled, and tested a reliable laser system for ^(87)Rb cold atom fountain clocks. The laser system is divided into four modules according to function, which are convenient for installing, adjusting, maintaining, and replacing of the modules. In each functional module, all optical components are fixed on a baseplate with glue and screws, ensuring the system's structural stability. Mechanical stability was verified in a 6.11g RMS randomvibration test, where the change in output power before and after vibration was less than 5%. Thermal stability was realized by optimizing of the structure and appropriate selection of component materials of the modules through thermal simulation. In the laser splitting and output module, the change in laser power was less than 20% for each fiber in thermal cycles from 5℃ to 43℃. Finally,the functionality of the laser system was verified for a rubidium fountain clock.
文摘Using modularized components, we have built a miniaturized optical system for 87Rb atomic fountain clock that is fitted on an 80 cm × 60 cm optical breadboard. Compared with the conventional optical setup on the table, our system is more compact, more robust and miniaturized. Taking advantage of this system, laser beams are transmitted through eight optical fibre patch cords from the optical breadboard to an ultra high vacuum system. This optical setup has operated for five months in our fountain system and required no alignment.
基金Project supported by the National Natural Science Foundation of China(Grant No.U20A2075).
文摘Sideband cooling is a key technique for improving the performance of optical atomic clocks by preparing cold atoms and single ions into the ground vibrational state.In this work,we demonstrate detailed experimental research on pulsed Raman sideband cooling in a 171 Yb optical lattice clock.A sequence comprised of interleaved 578 nm cooling pulses resonant on the 1st-order red sideband and 1388 nm repumping pulses is carried out to transfer atoms into the motional ground state.We successfully decrease the axial temperature of atoms in the lattice from 6.5μK to less than 0.8μK in the trap depth of 24μK,corresponding to an average axial motional quantum number<nz><0.03.Rabi oscillation spectroscopy is measured to evaluate the effect of sideband cooling on inhomogeneous excitation.The maximum excitation fraction is increased from 0.8 to 0.86,indicating an enhancement in the quantum coherence of the ensemble.Our work will contribute to improving the instability and uncertainty of Yb lattice clocks.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10604057 and 10874193)the National High-Tech Programme (Grant No. 2006AA12Z311)the National Basic Research Programme of China (Grant No. 2005CB724506)
文摘This paper reports an experiment on laser cooling of STRb atoms in pulsed diffuse light, which is the key step towards a compact cold atom clock. It deduces an empirical formula to simulate the pulse cooling process based on the loading of cold atoms in cooling time and the loss in the dead time, which is in agreement with the experimental data. The formula gives a reference to select the parameters for the cold atom clock.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61473166 and 41404146)
文摘We investigate experimentally and numerically the quantitative dependence of characteristics of a low-velocity intensity source(LVIS) of atomic beam on light parameters, especially the polarization of cooling laser along the atomic beam axis(pushing beam). By changing the polarization of the pushing beam, the longitudinal mean velocity of a rubidium atomic beam can be tuned continuously from 10 to 20 m/s and the flux can range from 3 × 10^-8 to 1 × 10^-9 atoms/s, corresponding to the maximum sensitivity of the velocity with respect to the polarization angle of 20(m/s)/rad and the mean sensitivity of flux of 1.2 × 10^-9(atoms/s)/rad. The mechanism is explained with a Monte-Carlo based numerical simulation method, which shows a qualitative agreement with the experimental result. This is also a demonstration of a method enabling the fast and continuous modulation of a low-velocity intense source of cold atomic beam on the velocity or flux,which can be used in many fields, like the development of a cold atomic beam interferometer and atom lithography.
基金Project supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences the National Natural Science Foundation of China(Grant Nos.61875215,61727821,and 11604353)
文摘We develop an integrated integrating sphere cold atom clock(ISCAC), which mainly consists of physical package,laser system, microwave source, and electronics.This compact system is more stable and reliable than the previous version.The experimental results show that the short term frequency stability of 5.4×10^-13τ-1/2 and 2.9× 10^-15 at 1-day integrating time are achieved.
基金supported by the National Natural Science Foundation of China (Grant No. 50775127)the Major State Basic Research Development Program of China (Grant No. 2010CB922901)the Independent Research Projects of Tsinghua University,China (Grant No. 2009THZ06)
文摘We demonstrate an experimental setup for the production of a beam source of cold 87Rb atoms. The atoms are extracted from a trapped cold atomic cloud in an unbalanced three-dimensional magneto-optical trap. Via a radiation pressure difference generated by a specially designed leak tunnel along one trapping laser beam, the atoms are pushed out continuously with low velocities and a high flux. The most-probable velocity in the beam is varied from 9 m/s to 19 m/s by varying the detuning of the trapping laser beams in the magneto-optical trap and the flux can be tuned up to 4× 10^9 s-1 by increasing the intensity of the trapping beams. We also present a simple model for describing the dependence of the beam performance on the magneto optical trap trapping laser intensity and the detuning.
基金supported by the National Basic Research Program of China (Grant Nos. 2012CB821302 and 2010CB922903)the National Natural Science Foundation of China (Grant Nos. 11134003 and 10774044)the Shanghai Excellent Academic Leaders Program of China (Grant No. 12XD1402400)
文摘An optical atomic clock with 171yb atoms is devised and tested. By using a two-stage Doppler cooling technique, the 171Yb atoms are cooled down to a temperature of 6 ± 3 μK, which is close to the Doppler limit. Then, the cold 171Yb atoms are loaded into a one-dimensional optical lattice with a wavelength of 759 nm in the Lamb-Dicke regime. Furthermore, these cold 171yb atoms are excited from the ground-state 1S0 to the excited-state 3P0 by a clock laser with a wavelength of 578 nm. Finally, the 1S0-3P0 clock-transition spectrum of these 171yb atoms is obtained by measuring the dependence of the population of the ground-state 1 S0 upon the clock-laser detuning.
基金Project supported by the Ministry of Science and Technology of China(Grant No.2013YQ09094304)the Youth Innovation Promotion Association,Chinese Academy of Sciencesthe National Natural Science Foundation of China(Grant Nos.11034008 and 11274324)
文摘When the cold atom clock operates in microgravity around the near-earth orbit, its performance will be affected by the fluctuation of magnetic field. A strategy is proposed to suppress the fluctuation of magnetic field by additional coils, whose current is changed accordingly to compensate the magnetic fluctuation by the linear and incremental compensation. The flight model of the cold atom clock is tested in a simulated orbital magnetic environment and the magnetic field fluctuation in the Ramsey cavity is reduced from 17 nT to 2 nT, which implied the uncertainty due to the second order Zeeman shift is reduced to be less than 2×10^(-16). In addition, utilizing the compensation, the magnetic field in the trapping zone can be suppressed from 7.5 μT to less than 0.3 μT to meet the magnetic field requirement of polarization gradients cooling of atoms.
基金Project supported by the National Key Basic Research and Development Program of China(Grant Nos.2016YFA0302103,2017YFF0212003,and 2016YFB0501601)the Municipal Science and Technology Major Project of Shanghai,China(Grant No.2019SHDZX01)+1 种基金the National Natural Science Foundation of China(Grant No.11134003)the Excellent Academic Leaders Program of Shanghai,China(Grant No.12XD1402400).
文摘The optical atomic clocks have the potential to transform global timekeeping,relying on the state-of-the-art accuracy and stability,and greatly improve the measurement precision for a wide range of scientific and technological applications.Herein we report on the development of the optical clock based on 171Yb atoms confined in an optical lattice.A minimum width of 1.92-Hz Rabi spectra has been obtained with a new 578-nm clock interrogation laser.The in-loop fractional instability of the 171Yb clock reaches 9.1×10-18 after an averaging over a time of 2.0×104 s.By synchronous comparison between two clocks,we demonstrate that our 171Yb optical lattice clock achieves a fractional instability of 4.60×10-16/√τ.
基金supported by National Natural Science Foundation of China (Grant Nos 10574141 and 10675162)
文摘This paper studies a miniature low power consumption laser-pumped atom vapour cell clock scheme. Pumping ^87Rb with a vertical cavity surface emitting laser diode pump and locking the laser frequency on a Doppler-broadened spectral line, it records a 5 × 10^-11τ-1/2 (τ〈500 s) frequency stability with a table-top system in a primary experiment. The study reveals that the evaluated scheme is at the level of 2.7 watts power consumption, 90 cm^3 volume and 10^-12τ-1/2 short-term frequency stability.