Conventional periodic structures usually have nontunable refractive indices and thus lead to immutable photonic bandgaps. A periodic structure created in an ultracold atoms ensemble by externally controlled light can ...Conventional periodic structures usually have nontunable refractive indices and thus lead to immutable photonic bandgaps. A periodic structure created in an ultracold atoms ensemble by externally controlled light can overcome this disadvantage and enable lots of promising applications. Here, two novel types of optically induced square lattices, i.e., the amplitude and phase lattices, are proposed in an ultracold atoms ensemble by interfering four ordinary plane waves under different parameter conditions. We demonstrate that in the far-field regime, the atomic amplitude lattice with high transmissivity behaves similarly to an ideal pure sinusoidal amplitude lattice, whereas the atomic phase lattices capable of producing phase excursion across a weak probe beam along with high transmissivity remains equally ideal. Moreover, we identify that the quality of Talbot imaging about a phase lattice is greatly improved when compared with an amplitude lattice. Such an atomic lattice could find applications in alloptical switching at the few photons level and paves the way for imaging ultracold atoms or molecules both in the near-field and in the far-field with a nondestructive and lensless approach.展开更多
We study the steady optical response of a square lattice in which all trapped atoms are driven by a probe and a coupling fields into the ladder configuration of electromagnetically induced transparency(EIT).It turns o...We study the steady optical response of a square lattice in which all trapped atoms are driven by a probe and a coupling fields into the ladder configuration of electromagnetically induced transparency(EIT).It turns out to be a manybody problem in the presence of van der Waals(vd W)interaction among atoms in the upmost Rydberg state,so Monte Carlo(MC)calculation based on density matrix equations have been done after introducing a sufficiently large cut-off radius.It is found that the absorption and dispersion of EIT spectra depends critically on a few key parameters like lattice dimension,unitary vd W shift,probe Rabi frequency,and coupling detuning.Through modulating these parameters,it is viable to change symmetries of the absorption and dispersion spectra and control on demand depth and position of the transparency window.Our MC calculation is expected to be instructive in understanding many-body quantum coherence effects and in manipulating non-equilibrium quantum phenomena by utilizing vd W interactions of Rydberg atoms.展开更多
An ultra-narrow spectroscopy of clock transition with high signal-to-noise ratio is crucial for a high-performance atomic optical clock. We present a detailed study about how to obtain a Hertz-level clock transition s...An ultra-narrow spectroscopy of clock transition with high signal-to-noise ratio is crucial for a high-performance atomic optical clock. We present a detailed study about how to obtain a Hertz-level clock transition spectrum of 171 Yb atoms. About 4 × 10^4 atoms are loaded into a one-dimensional optical lattice with a magic wavelength of 759 nm, and a long lifetime of 3 s is realized with the lattice power of I W. Through normalized shelving detection and spin polarization, 171 Yb clock spectroscopy with a fourier-limited linewidth of 5.9 Hz is obtained. Our work represents a key step toward an ytterbium optical clock with high frequency stability.展开更多
We propose a new method to control the directed quantum transport of ultracold atoms in a one-dimensional optical lattice. In this proposal, the effective tunneling between the neighboring sites can be adjusted via co...We propose a new method to control the directed quantum transport of ultracold atoms in a one-dimensional optical lattice. In this proposal, the effective tunneling between the neighboring sites can be adjusted via coherent destruction of tunneling by tuning the phase of the external field, instead of using the driving field intensity or the frequency, thus the directed quantum transport of ultracold atoms can be coherently controlled in a nmch easier manner. Our proposal overcomes the major drawback of the method used by Creffield et al [Phys. Rev. Lett. 99 (2007) 110501], and can be implemented, in principle, in any one-dimensional optical lattice. Some potential applications of the scheme are also discussed.展开更多
We propose some new schemes to constitute two-dimensional (2D) array of multi-well optical dipole traps for cold atoms (or molecules) by using an optical system consisting of a binary 7r-phase grating and a 2D arr...We propose some new schemes to constitute two-dimensional (2D) array of multi-well optical dipole traps for cold atoms (or molecules) by using an optical system consisting of a binary 7r-phase grating and a 2D array of rectangle microlens. We calculate the intensity distribution of each optical well in 2D array of multi-well traps and its geometric parameters and so on. The proposed 2D array of multi-well traps can be used to form novel 2D optical lattices with cold atoms (or molecules), and form various novel optical crystals with cold atoms (or molecules), or to perform quantum computing and quantum information processing on an atom chip, even to realize an array of all-optical multi-well atomic (or molecular) Bose- Einstein condensates (BECs) on an all-optical integrated atom (or molecule) chip.展开更多
Tight-binding models for ultracold atoms in optical lattices can be properly defined by using the concept of maximally localized Wannier functions for composite bands. The basic principles of this approach are reviewe...Tight-binding models for ultracold atoms in optical lattices can be properly defined by using the concept of maximally localized Wannier functions for composite bands. The basic principles of this approach are reviewed here, along with different applications to lattice potentials with two minima per unit cell, in one and two spatial dimensions. Two independent methods for computing the tight-binding coefficients—one ab initio, based on the maximally localized Wannier functions, the other through analytic expressions in terms of the energy spectrum—are considered. In the one dimensional case, where the tight-binding coefficients can be obtained by designing a specific gauge transformation, we consider both the case of quasi resonance between the two lowest bands, and that between s and p orbitals. In the latter case, the role of the Wannier functions in the derivation of an effective Dirac equation is also reviewed. Then, we consider the case of a two dimensional honeycomb potential, with particular emphasis on the Haldane model, its phase diagram, and the breakdown of the Peierls substitution. Tunable honeycomb lattices, characterized by movable Dirac points, are also considered. Finally, general considerations for dealing with the interaction terms are presented.展开更多
We propose a novel array of controllable double-well magnetic microtraps for cold atoms by using an array of square current-carrying wires and two additional bias magnetic fields. Arrays of double layer magneto optica...We propose a novel array of controllable double-well magnetic microtraps for cold atoms by using an array of square current-carrying wires and two additional bias magnetic fields. Arrays of double layer magneto optical traps (MOTs) and Ioffe traps can be constructed by using same wire configurations and different currents and bias fields. Furthermore, the array of double-well magnetic microtraps can be continuously evolved as an array of single-well magnetic microtraps by reducing the currents in the wires. Our study shows that our scheme can be used to realize a controllable double-layer magnetic lattice with cold atoms, to form array of Bose-Einstein condensations (BECs), or to study atom interference, and so on.展开更多
基金National Natural Science Foundation of China(NSFC)(61605155,61627812)Fundamental Research Funds for the Central Universities
文摘Conventional periodic structures usually have nontunable refractive indices and thus lead to immutable photonic bandgaps. A periodic structure created in an ultracold atoms ensemble by externally controlled light can overcome this disadvantage and enable lots of promising applications. Here, two novel types of optically induced square lattices, i.e., the amplitude and phase lattices, are proposed in an ultracold atoms ensemble by interfering four ordinary plane waves under different parameter conditions. We demonstrate that in the far-field regime, the atomic amplitude lattice with high transmissivity behaves similarly to an ideal pure sinusoidal amplitude lattice, whereas the atomic phase lattices capable of producing phase excursion across a weak probe beam along with high transmissivity remains equally ideal. Moreover, we identify that the quality of Talbot imaging about a phase lattice is greatly improved when compared with an amplitude lattice. Such an atomic lattice could find applications in alloptical switching at the few photons level and paves the way for imaging ultracold atoms or molecules both in the near-field and in the far-field with a nondestructive and lensless approach.
基金the National Natural Science Foundation of China(Grant No.12074061)。
文摘We study the steady optical response of a square lattice in which all trapped atoms are driven by a probe and a coupling fields into the ladder configuration of electromagnetically induced transparency(EIT).It turns out to be a manybody problem in the presence of van der Waals(vd W)interaction among atoms in the upmost Rydberg state,so Monte Carlo(MC)calculation based on density matrix equations have been done after introducing a sufficiently large cut-off radius.It is found that the absorption and dispersion of EIT spectra depends critically on a few key parameters like lattice dimension,unitary vd W shift,probe Rabi frequency,and coupling detuning.Through modulating these parameters,it is viable to change symmetries of the absorption and dispersion spectra and control on demand depth and position of the transparency window.Our MC calculation is expected to be instructive in understanding many-body quantum coherence effects and in manipulating non-equilibrium quantum phenomena by utilizing vd W interactions of Rydberg atoms.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61227805,91536104 and 11574352
文摘An ultra-narrow spectroscopy of clock transition with high signal-to-noise ratio is crucial for a high-performance atomic optical clock. We present a detailed study about how to obtain a Hertz-level clock transition spectrum of 171 Yb atoms. About 4 × 10^4 atoms are loaded into a one-dimensional optical lattice with a magic wavelength of 759 nm, and a long lifetime of 3 s is realized with the lattice power of I W. Through normalized shelving detection and spin polarization, 171 Yb clock spectroscopy with a fourier-limited linewidth of 5.9 Hz is obtained. Our work represents a key step toward an ytterbium optical clock with high frequency stability.
基金Supported by the National Basic Research Program of China under Grant No 2011CBA00200the National Natural Science Foundation of China under Grant No 11074244+3 种基金ARO(W911NF-12-1-0334)DARPA-YFA(N66001-10-1-4025)AFOSR(FA9550-11-1-0313)NSF-PHY(1104546)
文摘We propose a new method to control the directed quantum transport of ultracold atoms in a one-dimensional optical lattice. In this proposal, the effective tunneling between the neighboring sites can be adjusted via coherent destruction of tunneling by tuning the phase of the external field, instead of using the driving field intensity or the frequency, thus the directed quantum transport of ultracold atoms can be coherently controlled in a nmch easier manner. Our proposal overcomes the major drawback of the method used by Creffield et al [Phys. Rev. Lett. 99 (2007) 110501], and can be implemented, in principle, in any one-dimensional optical lattice. Some potential applications of the scheme are also discussed.
基金This work was supported by the National Natural Science Foundation of China (No. 10174050, 10374029, 10434060, and 10674047)the Shanghai Priority Academic Discipline and the 211 Foundation of the Educational Ministry of China.
文摘We propose some new schemes to constitute two-dimensional (2D) array of multi-well optical dipole traps for cold atoms (or molecules) by using an optical system consisting of a binary 7r-phase grating and a 2D array of rectangle microlens. We calculate the intensity distribution of each optical well in 2D array of multi-well traps and its geometric parameters and so on. The proposed 2D array of multi-well traps can be used to form novel 2D optical lattices with cold atoms (or molecules), and form various novel optical crystals with cold atoms (or molecules), or to perform quantum computing and quantum information processing on an atom chip, even to realize an array of all-optical multi-well atomic (or molecular) Bose- Einstein condensates (BECs) on an all-optical integrated atom (or molecule) chip.
基金supported by the Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (Grant No. UFI 11/55)the Ministerio de Economia y Competitividad (Grant No. FIS2012-36673-C03-03)+2 种基金the Basque Government (Grant No. IT472-10)the Helmholtz Gemeinschaft Deutscher-Young Investigators Group (Grant No. VH-NG-717, Functional Nanoscale Structure and Probe Simulation Laboratory)the Impuls und Vernetzungsfonds der HelmholtzGemeinschaft Postdoc Programme
文摘Tight-binding models for ultracold atoms in optical lattices can be properly defined by using the concept of maximally localized Wannier functions for composite bands. The basic principles of this approach are reviewed here, along with different applications to lattice potentials with two minima per unit cell, in one and two spatial dimensions. Two independent methods for computing the tight-binding coefficients—one ab initio, based on the maximally localized Wannier functions, the other through analytic expressions in terms of the energy spectrum—are considered. In the one dimensional case, where the tight-binding coefficients can be obtained by designing a specific gauge transformation, we consider both the case of quasi resonance between the two lowest bands, and that between s and p orbitals. In the latter case, the role of the Wannier functions in the derivation of an effective Dirac equation is also reviewed. Then, we consider the case of a two dimensional honeycomb potential, with particular emphasis on the Haldane model, its phase diagram, and the breakdown of the Peierls substitution. Tunable honeycomb lattices, characterized by movable Dirac points, are also considered. Finally, general considerations for dealing with the interaction terms are presented.
基金This work was supported by the National Natural Science Foundation of China (No. 10174050, 10374029, and 10434060)Shanghai Priority Academic Discipline, and the 211 Foundation of the Educational Ministry of China.
文摘We propose a novel array of controllable double-well magnetic microtraps for cold atoms by using an array of square current-carrying wires and two additional bias magnetic fields. Arrays of double layer magneto optical traps (MOTs) and Ioffe traps can be constructed by using same wire configurations and different currents and bias fields. Furthermore, the array of double-well magnetic microtraps can be continuously evolved as an array of single-well magnetic microtraps by reducing the currents in the wires. Our study shows that our scheme can be used to realize a controllable double-layer magnetic lattice with cold atoms, to form array of Bose-Einstein condensations (BECs), or to study atom interference, and so on.