We present the electromagnetically induced transparency(EIT)spectra of cold Rydberg four-level cascade atoms consisting of the 6S_(1/2)→6P_(3/2)→7S_(1/2)→60P_(3/2) scheme.A coupling laser drives the Rydberg transit...We present the electromagnetically induced transparency(EIT)spectra of cold Rydberg four-level cascade atoms consisting of the 6S_(1/2)→6P_(3/2)→7S_(1/2)→60P_(3/2) scheme.A coupling laser drives the Rydberg transition,a dressing laser couples two intermediate levels and a weak probe laser probes the EIT signal.We numerically solve the Bloch equations and investigate the dependence of the probe transmission rate signal on the coupling and dressing lasers.We find that the probe transmission rate can display an EIT or electromagnetically induced absorption(EIA)profile,depending on the Rabi frequencies of the coupling and dressing lasers.When we increase the Rabi frequency of the coupling laser and keep the Rabi frequency of the probe and dressing laser fixed,flipping of the EIA to EIT spectrum occurs at the critical coupling Rabi frequency.When we apply a microwave field coupling the transition 60P_(3/2)→61S_(1/2),the EIT spectrum shows Autler–Townes splitting,which is employed to measure the microwave field.The theoretical measurement sensitivity can be 1.52×10^(−2) nV・cm^(−1)・Hz−^(1/2) at the EIA–EIT flipping point.展开更多
Rydberg atoms-based electric field sensing has developed rapidly over the past decade.A variety of theoretical proposals and experiment configurations are suggested and realized to improve the measurement metrics,such...Rydberg atoms-based electric field sensing has developed rapidly over the past decade.A variety of theoretical proposals and experiment configurations are suggested and realized to improve the measurement metrics,such as intensity sensitivity,bandwidth,phase,and accuracy.The Stark effect and electromagnetically induced transparency(EIT)or electromagnetically induced absorption(EIA)are fundamental physics principles behind the stage.Furthermore,various techniques such as amplitude-or frequency-modulation,optical homodyne read-out,microwave superheterodyne and frequency conversion based on multi-wave mixing in atoms are utilized to push the metrics into higher levels.In this review,different technologies and the corresponding metrics they had achieved were presented,hoping to inspire more possibilities in the improvement of metrics of Rydberg atom-based electric field sensing and broadness of application scenarios.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U2341211,62175136,12241408,and 12120101004)the Innovation Program for Quantum Science and Technology(Grant No.2023ZD0300902)+1 种基金the Fundamental Research Program of Shanxi Province(Grant No.202303021224007)the 1331 Project of Shanxi Province.
文摘We present the electromagnetically induced transparency(EIT)spectra of cold Rydberg four-level cascade atoms consisting of the 6S_(1/2)→6P_(3/2)→7S_(1/2)→60P_(3/2) scheme.A coupling laser drives the Rydberg transition,a dressing laser couples two intermediate levels and a weak probe laser probes the EIT signal.We numerically solve the Bloch equations and investigate the dependence of the probe transmission rate signal on the coupling and dressing lasers.We find that the probe transmission rate can display an EIT or electromagnetically induced absorption(EIA)profile,depending on the Rabi frequencies of the coupling and dressing lasers.When we increase the Rabi frequency of the coupling laser and keep the Rabi frequency of the probe and dressing laser fixed,flipping of the EIA to EIT spectrum occurs at the critical coupling Rabi frequency.When we apply a microwave field coupling the transition 60P_(3/2)→61S_(1/2),the EIT spectrum shows Autler–Townes splitting,which is employed to measure the microwave field.The theoretical measurement sensitivity can be 1.52×10^(−2) nV・cm^(−1)・Hz−^(1/2) at the EIA–EIT flipping point.
基金supported by the National Key R&D Program of China(2022YFA1404000,2021YFA1402004,and 2022YFA1405300)the National Natural Science Foundation of China(61827824,61975104,12225405,U20A2074,U20A20218,61525504,and 61435011)+3 种基金the Innovation Program for Quantum Science and Technology(2021ZD0301700)the Fund for Science and Technology on Electronic Information Control Laboratory and the Fund for Shanxi“331 Project”Key Subjects Construction,Bairen Project of Shanxi Province,China,the Anhui Initiative in Quantum Information Technologies(AHY020200)the Major Science and Technology Projects in Anhui Province(202203a13010001)National Research Foundation,Prime Ministers Office,Singapore and the Ministry of Education,Singapore under the Research Centres of Excellence programme.
文摘Rydberg atoms-based electric field sensing has developed rapidly over the past decade.A variety of theoretical proposals and experiment configurations are suggested and realized to improve the measurement metrics,such as intensity sensitivity,bandwidth,phase,and accuracy.The Stark effect and electromagnetically induced transparency(EIT)or electromagnetically induced absorption(EIA)are fundamental physics principles behind the stage.Furthermore,various techniques such as amplitude-or frequency-modulation,optical homodyne read-out,microwave superheterodyne and frequency conversion based on multi-wave mixing in atoms are utilized to push the metrics into higher levels.In this review,different technologies and the corresponding metrics they had achieved were presented,hoping to inspire more possibilities in the improvement of metrics of Rydberg atom-based electric field sensing and broadness of application scenarios.