Atomically dispersed precious metal catalysts maximize atom efficiency and exhibit unique reactivity.However,they are susceptible to sintering.Catalytic reactions occurring in reducing environments tend to result in a...Atomically dispersed precious metal catalysts maximize atom efficiency and exhibit unique reactivity.However,they are susceptible to sintering.Catalytic reactions occurring in reducing environments tend to result in atomically dispersed metals sintering at lower temperatures than in oxidative or inert atmospheres due to the formation of mobile metal-H or metal-CO complexes.Here,we develop a new approach to mitigate sintering of oxide supported atomically dispersed metals in a reducing atmosphere using organophosphonate self-assembled monolayers(SAMs).We demonstrate this for the case of atomically dispersed Rh on Al_(2)O_(3) and TiO_(2) using a combination of CO probe molecule FTIR,temperature programmed desorption,and alkene hydrogenation rate measurements.Evidence suggests that SAM functionalization of the oxide provides physical diffusion barriers for the metal and weakens the interactions between the reducing gas and metal,thereby discouraging the adsorbate-promoted diffusion of metal atoms on oxide supports.Our results show that support functionalization by organic species can provide improved resistance to sintering of atomically dispersed metals with maintained catalytic reactivity.展开更多
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz...Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.展开更多
Atomically dispersed catalysts(ADCs)have been diffusely researched for the development of advanced catalytic processes owing to their welldefined structure,high atomic utilization,and outstanding activity.Precisely de...Atomically dispersed catalysts(ADCs)have been diffusely researched for the development of advanced catalytic processes owing to their welldefined structure,high atomic utilization,and outstanding activity.Precisely decoding the intrinsic structures and coordination microenvironments of ADCs still confronts significant challenges.Overcoming these challenges is important for profound understanding of the structure-activity relationships and directing the future design of ADCs.Herein,this minireview summarizes recent progress and advanced characterization techniques for the engineering of ADCs,including single-atom catalysts,dualatom catalysts,and atomic cluster catalysts with regard to precise synthesis,structural regulation,and the structure-performance relationship.The catalytic merits and regulation strategies of recent breakthroughs in energy conversion,enzyme mimicry,and organic synthesis are thoroughly discussed to disclose the catalytic mechanism-guided ADCs design.Finally,a comprehensive summary of the future challenges and potential prospects is presented to stimulate more design and application possibilities for ADCs.We believe that this comprehensive minireview will open up novel pathways for the widespread utilization of ADCs in diverse catalytic processes.展开更多
The real structure and in situ evolution of catalysts under working conditions are of paramount importance,especially for bifunctional electrocatalysis.Here,we report asymmetric structural evolution and dynamic hydrog...The real structure and in situ evolution of catalysts under working conditions are of paramount importance,especially for bifunctional electrocatalysis.Here,we report asymmetric structural evolution and dynamic hydrogen-bonding promotion mechanism of an atomically dispersed electrocatalyst.Pyrolysis of Co/Ni-doped MAF-4/ZIF-8 yielded nitrogen-doped porous carbons functionalized by atomically dispersed Co–Ni dual-metal sites with an unprecedented N8V4 structure,which can serve as an efficient bifunctional electrocatalyst for overall water splitting.More importantly,the electrocatalyst showed remarkable activation behavior due to the in situ oxidation of the carbon substrate to form C–OH groups.Density functional theory calculations suggested that the flexible C–OH groups can form reversible hydrogen bonds with the oxygen evolution reaction intermediates,giving a bridge between elementary reactions to break the conventional scaling relationship.展开更多
Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,in...Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,increasing the binding of the*COOH to the active site will generally increase the*CO desorption energy.Breaking this relationship may be expected to dramatically improve the intrinsic activity of CO_(2)RR,but remains an unsolved challenge.Herein,we addressed this conundrum by constructing a unique atomic dispersed hetero-pair consisting of Mo-Fe di-atoms anchored on N-doped carbon carrier.This system shows an unprecedented CO_(2)RR intrinsic activity with TOF of 3336 h−1,high selectivity toward CO production,Faradaic efficiency of 95.96%at−0.60 V and excellent stability.Theoretical calculations show that the Mo-Fe diatomic sites increased the*COOH intermediate adsorption energy by bridging adsorption of*COOH intermediates.At the same time,d-d orbital coupling in the Mo-Fe di-atom results in electron delocalization and facilitates desorption of*CO intermediates.Thus,the undesirable correlation between these steps is broken.This work provides a promising approach,specifically the use of di-atoms,for breaking unfavorable relationships based on understanding of the catalytic mechanisms at the atomic scale.展开更多
A new approach to allylic alkylation is realized using an atomically dispersed palladium catalyst(Pd1/TiO2-EG).Unlike conventional methods that require derivation of substrates and utilization of additives,this method...A new approach to allylic alkylation is realized using an atomically dispersed palladium catalyst(Pd1/TiO2-EG).Unlike conventional methods that require derivation of substrates and utilization of additives,this method allows for direct allylic alkylation from allylic alcohols,producing H2O as the sole by-product.The catalyst's high efficiency is attributed to the local hydrogen bonding at the or-ganic-inorganic interface(Pd-EG interface),facilitating hydroxyl group activation forη3π-allyl complex formation.The system demonstrates successful direct C—O and C—C coupling reactions with high selectivity,requiring no additives.This study highlights the potential of supported atomically dispersed catalysts for greener and more efficient catalysis,meanwhile,offers unique insights into the distinct behavior of atomically dispersed catalysts in comparison to homogeneous or nanoparticle-based catalysts.展开更多
The synthesis of mesoporous zeolite-anchored atomically dispersed metal catalysts(ADCs)is a considerable challenge in chemistry and materials science.Here we report the synthesis of atomically dispersed cationic nicke...The synthesis of mesoporous zeolite-anchored atomically dispersed metal catalysts(ADCs)is a considerable challenge in chemistry and materials science.Here we report the synthesis of atomically dispersed cationic nickel-confined mesoporous ZSM-48(ANMZ-48)by in situ hydrothermal reaction employing a designed tri-functional metal complex template,by which the triquaternary ammonium groups in the hydrophilic region direct the formation of ZSM-48 zeolite;the aromatic groups in the hydrophobic tail generate the mesopores through π-π stacking;and the complexes formed by nickel ions coordinated with terpyridyl groups generate atomically dispersed Ni2+confined in zeolite frameworks due to the strong sintering resistance generated by the strong coordination interaction.The ANMZ-48 is consisting of stacking of sheet-like ZSM-48 domains connected by multiply crystal twinning sharing the common(011)plane,generating abundant of imbedded mesopores with the uniform thickness of~2.4 nm and with the width of 10-50 nm.The excellent catalytic activity and stability of ANMZ-48 were also reflected in the dry reforming of methane(DRM)reaction.展开更多
Nickel-nitrogen-carbon single-atom catalysts have attracted widespread interest for CO_(2)electroreduction but they suffer from poor stability.Herein,we report on the preparation of Cl-and N-doped porous carbon nanosh...Nickel-nitrogen-carbon single-atom catalysts have attracted widespread interest for CO_(2)electroreduction but they suffer from poor stability.Herein,we report on the preparation of Cl-and N-doped porous carbon nanosheets with atomically dispersed NiN_(4)Cl active sites(NiN_(4)Cl-ClNC)through a molten-salt-assisted pyrolysis strategy.The optimized NiN_(4)Cl-ClNC catalyst delivers exceptional CO_(2)conversion activity with outstanding stability for over 220 h at−0.7 V versus RHE and a high CO Faradaic efficiency of 98.7%at a CO partial current density of 12.4 mA cm^(−2).Moreover,NiN_(4)Cl-ClNC displays a remarkable CO partial current density of approximately 349.4 mA cm^(−2)in flow-cell,meeting the requirements of industrial applications.Operando attenuated total reflectance surface-enhanced infrared absorption spectroscopy and density functional theory calculations are used to understand the outstanding activity and stability.Results reveal that the introduced axial Ni-Cl bond on the Ni center and Cl─C bond on the carbon support synergetically induce electronic delocalization,which not only stabilizes Ni against leaching but also facilitates the formation of the COOH*intermediate that is found to be the rate-determining step.展开更多
The appropriate catalysts can accelerate the reaction rate and effectively boost the efficient conversion of various molecules,which is of great importance in the study of chemistry,chemical industry,energy,materials ...The appropriate catalysts can accelerate the reaction rate and effectively boost the efficient conversion of various molecules,which is of great importance in the study of chemistry,chemical industry,energy,materials and environmental science.Therefore,efficient,environmentally friendly,and easy to operate synthesis methods have been used to prepare various types of catalysts.Although previous studies have reported the synthesis and characterization of the aforementioned catalysts,more still remain in trial and error methods,without in-depth consideration and improvement of traditional synthesis methods.Here,we comprehensively summarize and compare the preparation methods of the trial-and-error synthesis strategy,structure–activity relationships and density functional theory(DFT)guided catalysts rational design for nanomaterials and atomically dispersed catalysts.We also discuss in detail the utilization of the nanomaterials and single atom catalysts for converting small molecules(H_(2)O,O_(2),CO_(2),N_(2),etc.)into value-added products driven by electrocatalysis,photocatalysis,and thermocatalysis.Finally,the challenges and outlooks of mass preparation and production of efficient and green catalysts through conventional trial and error synthesis and DFT theory are featured in accordance with its current development.展开更多
An atomically dispersed FeCo-NC material with the 3D flower-like morphology was used as a unique substrate for the controllable deposition of ultrasmall NiFe layered double hydroxide nanodots(termed as NiFe-NDs)to sim...An atomically dispersed FeCo-NC material with the 3D flower-like morphology was used as a unique substrate for the controllable deposition of ultrasmall NiFe layered double hydroxide nanodots(termed as NiFe-NDs)to simultaneously promote the sluggish kinetics of oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).The size-limiting growth of NiFe-NDs(~4.0 nm in diameter)was realized via the confinement of the 3D flower-like mesoporous structure and the rich N/O functionality of FeCo-NC.Benefiting from the distinctive structure with the simultaneously maximum exposure of both OER and ORR active sites,the NiFe-ND/FeCo-NC composite showed an ORR halfwave potential of 0.85 V and an OER potential of 1.66 V in0.1 mol L-1KOH at 10.0 mA cm-2.In-situ Raman analysis suggested the activity of OER was derived from the Ni sites on NiFe-ND/FeCo-NC.Moreover,the NiFe-ND/FeCo-NC-assembled Zn-air battery(ZAB)exhibited a very small discharge-charge voltage gap of 0.87 V at 20 mA cm-2and robust cycling stability.Furthermore,the NiFe-ND/FeCo-NC composite was also applicable for fabricating all-solid-state ZAB to power wearable electronics with superior cycling stability under deformation.Our work could enlighten a new applicable branch of atomically dispersed metal-nitrogen-carbon materials as unique substrates for fabricating multifunctional electrocatalysts.展开更多
Atomically dispersed catalysts have demonstrated superior catalytic performance in many chemical transformations.However,limited success has been achieved in applying oxide-supported atomically dis-persed catalysts to...Atomically dispersed catalysts have demonstrated superior catalytic performance in many chemical transformations.However,limited success has been achieved in applying oxide-supported atomically dis-persed catalysts to semihydrogenation of alkynes under mild conditions.展开更多
Development of high-performance and cost-effective catalysts for electrocatalytic hydrogen evolution reaction(HER)play crucial role in the growing hydrogen economy.Recently,the atomically dispersed metal catalysts hav...Development of high-performance and cost-effective catalysts for electrocatalytic hydrogen evolution reaction(HER)play crucial role in the growing hydrogen economy.Recently,the atomically dispersed metal catalysts have attracted increasing attention due to their ultimate atom utilization and great potential for highly cost-effective and high-efficiency HER electrocatalyst.Herein,we propose a hightemperature treatment strategy to furtherly improve the HER performance of atomically dispersed Ptbased catalyst.Interestingly,after appropriate high-temperature treatment on the atomically dispersed Pt0.8@CN,the Pt species on the designed N-doped porous carbon substrate with rich defect sites can be re-dispersed to single atom state with new coordination environment.The obtained Pt0.8@CN-1000 shows superior HER performance with overpotential of 13 m V at 10 m A cm^(-2)and mass activity of 11,284 m A/mgPtat-0.1 V,much higher than that of the pristine Pt0.8@CN and commercial Pt/C catalyst.The experimental and theoretical investigations indicate that the high-temperature treatment induces the restructuring of coordination environment and then the optimized Pt electronic state leads to the enhanced HER performances.This work affords new strategy and insights to develop the atomically dispersed high-efficiency catalysts.展开更多
Supported catalysts that are important in technology prominently include atomically dispersed metals and metal clusters.When the metals are noble,they are typically unstablesusceptible to sinteringespecially under red...Supported catalysts that are important in technology prominently include atomically dispersed metals and metal clusters.When the metals are noble,they are typically unstablesusceptible to sinteringespecially under reducing conditions.Embedding the metals in supports such as organic polymers,metal oxides,and zeolites confers stability on the metals but at the cost of catalytic activity associated with the lack of accessibility of metal bonding sites to reactants.An approach to stabilizing noble metal catalysts while maintaining their accessibility involves anchoring them in molecular-scale nests that are in or on supports.The nests include zeolite pore mouths,zeolite surface cups(half-cages),raft-like islands of oxophilic metals bonded to metal oxide supports,clusters of non-noble metals(e.g.,hosting noble metals as single-atom alloys),and nanoscale metal oxide islands that selectively bond to the catalytic metals,isolating them from the support.These examples illustrate a trend toward precision in the synthesis of solid catalysts,and the latter two classes of nested catalysts offer realistic prospects for economical large-scale application.展开更多
Carbon materials featuring hierarchical pores and atomically dispersed metal sites are promising catalysts for energy storage and conversion applications.Herein,we developed a facile strategy to construct functional c...Carbon materials featuring hierarchical pores and atomically dispersed metal sites are promising catalysts for energy storage and conversion applications.Herein,we developed a facile strategy to construct functional carbon materials with a fluffy peony-like structure and dense binary FeCo-Nx active sites(termed as f-FeCo-CNT).By regulating the metal content in precursors,a three-dimensional(3D)interconnected conductive carbon nanotubes network was in-situ formed throughout the atomically dispersed FeCo-NC matrix during pyrolysis.Taking advantage of rich pore hierarchy and co-existence of highly active FeCo-Nx sites and beneficial FeCo alloy nanoparticles,the f-FeCo-CNT material exhibited excellent bifunctional performance towards oxygen reduction reaction/oxygen evolution reactions(ORR/OER)with respect to the atomically dispersed FeCo-NC(SA-f-FeCo-NC)and commercial Pt/C+Ru02 mixture,surpassing the SA-f-FeCo-NC with a 20 mV higher ORR half-wave potential and a 100 mV lower OER overpotential(at 10.0 mA/cm^2).Remarkably,the f-FeCo-CNT-assembled Zn-air battery(ZAB)possessed a maximum specific power of 195.8 mW/cm^2,excellent rate capability,and very good cycling stability at large current density of 20.0 mA/cm^2.This work provides a facile and feasible synthetic strategy of constructing low-cost cathode materials with excellent comprehensive ZAB performance.展开更多
The rational design of highly active and stable atomically dispersed M-X4(M=Fe,Co,Ni,etc.,X=C,N)-based catalysts holds promises for wide application in almost all realms of catalysis.Despite great effort in the constr...The rational design of highly active and stable atomically dispersed M-X4(M=Fe,Co,Ni,etc.,X=C,N)-based catalysts holds promises for wide application in almost all realms of catalysis.Despite great effort in the construction of specific M-X4 centers,the possible effect of non-coordinated heteroatoms on the catalytic activity of metal centers has been rarely explored.Herein,we develop a new type of M-X4 catalyst composed of Fe-N4 centers and non-coordinated B heteroatoms(FeNC+B)and find the key role of non-coordinated B adjacent to Fe-N4 centers in tailoring their electron density and final catalytic selectivity.The experimental and theoretical results demonstrated that non-coordinated boron atoms could decrease the electron density of Fe-N4 centers to a suitable level and thus boost the selective production of nitriles from amine oxidation by depressing the formation of imines due to the flattened energy barrier of the reversible conversion of imines back to amines.As a reusable heterocatalyst,the state-of-the-art FeNC+B catalyst provides a turn-over frequency(TOF)value of 21.6 molbenzonitrile·molFe^−1·h^−1(100℃),outpacing that of bench-marked nonnoble-metal-based homogeneous catalyst by a factor of 3.4.展开更多
Although driven by different research interests,single-site catalysts and single-atom catalysts are both believed to be model systems bridging homogeneous and heterogeneous catalysis.The two concepts are similar but d...Although driven by different research interests,single-site catalysts and single-atom catalysts are both believed to be model systems bridging homogeneous and heterogeneous catalysis.The two concepts are similar but different.In this review,we will first explain the difference between single-atom catalysis and single-site catalysis,in terms of their goals,synthetic methods and coordination structures of corresponding catalysts.Then,we will introduce the surface organometallic chemistry method,a method traditionally used for synthesizing single-site catalyst.We will explain why it might benefit the single-atom catalysis community.At last,the choice of support to accommodate the method for synthesizing single-atom catalysts will be discussed.展开更多
基金support from the Department of Energy,Office of Science,Basic Energy Sciences Program,Chemical Sciences,Geosciences,and Biosciences Division[Grant No.DE-SC0005239]support from National Science Foundation(NSF)CAREER grant number CBET-1554112 for work on organic modification of oxide supports surrounding atomically dispersed metal active sites.
文摘Atomically dispersed precious metal catalysts maximize atom efficiency and exhibit unique reactivity.However,they are susceptible to sintering.Catalytic reactions occurring in reducing environments tend to result in atomically dispersed metals sintering at lower temperatures than in oxidative or inert atmospheres due to the formation of mobile metal-H or metal-CO complexes.Here,we develop a new approach to mitigate sintering of oxide supported atomically dispersed metals in a reducing atmosphere using organophosphonate self-assembled monolayers(SAMs).We demonstrate this for the case of atomically dispersed Rh on Al_(2)O_(3) and TiO_(2) using a combination of CO probe molecule FTIR,temperature programmed desorption,and alkene hydrogenation rate measurements.Evidence suggests that SAM functionalization of the oxide provides physical diffusion barriers for the metal and weakens the interactions between the reducing gas and metal,thereby discouraging the adsorbate-promoted diffusion of metal atoms on oxide supports.Our results show that support functionalization by organic species can provide improved resistance to sintering of atomically dispersed metals with maintained catalytic reactivity.
基金supported by the National Natural Science Foundation of China(22234005,21974070)the Natural Science Foundation of Jiangsu Province(BK20222015)。
文摘Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.
基金supported by the National Natural Science Foundation of China(grant no.22171157).
文摘Atomically dispersed catalysts(ADCs)have been diffusely researched for the development of advanced catalytic processes owing to their welldefined structure,high atomic utilization,and outstanding activity.Precisely decoding the intrinsic structures and coordination microenvironments of ADCs still confronts significant challenges.Overcoming these challenges is important for profound understanding of the structure-activity relationships and directing the future design of ADCs.Herein,this minireview summarizes recent progress and advanced characterization techniques for the engineering of ADCs,including single-atom catalysts,dualatom catalysts,and atomic cluster catalysts with regard to precise synthesis,structural regulation,and the structure-performance relationship.The catalytic merits and regulation strategies of recent breakthroughs in energy conversion,enzyme mimicry,and organic synthesis are thoroughly discussed to disclose the catalytic mechanism-guided ADCs design.Finally,a comprehensive summary of the future challenges and potential prospects is presented to stimulate more design and application possibilities for ADCs.We believe that this comprehensive minireview will open up novel pathways for the widespread utilization of ADCs in diverse catalytic processes.
基金supported by the National Key Research and Development Program of China(2021YFA1500401)the National Natural Science Foundation of China(21890380,21975290,21901089,and 21821003)+1 种基金the Foundation of Basic and Applied Basic Research of Guangdong Province(2020B1515120024)C.-T.H.acknowledges the Jiangxi Province(20202ZDB01004 and jxsq2018106041).
文摘The real structure and in situ evolution of catalysts under working conditions are of paramount importance,especially for bifunctional electrocatalysis.Here,we report asymmetric structural evolution and dynamic hydrogen-bonding promotion mechanism of an atomically dispersed electrocatalyst.Pyrolysis of Co/Ni-doped MAF-4/ZIF-8 yielded nitrogen-doped porous carbons functionalized by atomically dispersed Co–Ni dual-metal sites with an unprecedented N8V4 structure,which can serve as an efficient bifunctional electrocatalyst for overall water splitting.More importantly,the electrocatalyst showed remarkable activation behavior due to the in situ oxidation of the carbon substrate to form C–OH groups.Density functional theory calculations suggested that the flexible C–OH groups can form reversible hydrogen bonds with the oxygen evolution reaction intermediates,giving a bridge between elementary reactions to break the conventional scaling relationship.
基金the National Natural Science Foundation of China(22279044,12034002,and 22202080)the Project for Self-Innovation Capability Construction of Jilin Province Development and Reform Commission(2021C026)+1 种基金Jilin Province Science and Technology Development Program(20210301009GX)the Fundamental Research Funds for the Central Universities.
文摘Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,increasing the binding of the*COOH to the active site will generally increase the*CO desorption energy.Breaking this relationship may be expected to dramatically improve the intrinsic activity of CO_(2)RR,but remains an unsolved challenge.Herein,we addressed this conundrum by constructing a unique atomic dispersed hetero-pair consisting of Mo-Fe di-atoms anchored on N-doped carbon carrier.This system shows an unprecedented CO_(2)RR intrinsic activity with TOF of 3336 h−1,high selectivity toward CO production,Faradaic efficiency of 95.96%at−0.60 V and excellent stability.Theoretical calculations show that the Mo-Fe diatomic sites increased the*COOH intermediate adsorption energy by bridging adsorption of*COOH intermediates.At the same time,d-d orbital coupling in the Mo-Fe di-atom results in electron delocalization and facilitates desorption of*CO intermediates.Thus,the undesirable correlation between these steps is broken.This work provides a promising approach,specifically the use of di-atoms,for breaking unfavorable relationships based on understanding of the catalytic mechanisms at the atomic scale.
基金support from National Key R&D Program of China (2022YFA1504500)the National Natural Science Foundation of China (grant no.92261207,and NSFC Center for Single-Atom Catalysis under grant no.22388102)+4 种基金the New Cornerstone Science Foundation.P.L.acknowledges the Shanghai Pujiang Talent Program (No.21PJ1410400)the Start-up Funding and the Double First-Class Initiative Fund of ShanghaiTech University.R.Q.acknowledges support from the Young Scientists Fund of the National Natural Science Foundation of China (22202164)the Natural Science Foundation of Fujian Province (2023J05006)the Fundamental Research Funds for the Central Universities (20720230002)the Fujian Provincial Chemistry Discipline Alliance.
文摘A new approach to allylic alkylation is realized using an atomically dispersed palladium catalyst(Pd1/TiO2-EG).Unlike conventional methods that require derivation of substrates and utilization of additives,this method allows for direct allylic alkylation from allylic alcohols,producing H2O as the sole by-product.The catalyst's high efficiency is attributed to the local hydrogen bonding at the or-ganic-inorganic interface(Pd-EG interface),facilitating hydroxyl group activation forη3π-allyl complex formation.The system demonstrates successful direct C—O and C—C coupling reactions with high selectivity,requiring no additives.This study highlights the potential of supported atomically dispersed catalysts for greener and more efficient catalysis,meanwhile,offers unique insights into the distinct behavior of atomically dispersed catalysts in comparison to homogeneous or nanoparticle-based catalysts.
基金supported by the National Natural Science Foundation of China(21922304,22276086)the Fundamental Research Funds for the Central Universities。
文摘The synthesis of mesoporous zeolite-anchored atomically dispersed metal catalysts(ADCs)is a considerable challenge in chemistry and materials science.Here we report the synthesis of atomically dispersed cationic nickel-confined mesoporous ZSM-48(ANMZ-48)by in situ hydrothermal reaction employing a designed tri-functional metal complex template,by which the triquaternary ammonium groups in the hydrophilic region direct the formation of ZSM-48 zeolite;the aromatic groups in the hydrophobic tail generate the mesopores through π-π stacking;and the complexes formed by nickel ions coordinated with terpyridyl groups generate atomically dispersed Ni2+confined in zeolite frameworks due to the strong sintering resistance generated by the strong coordination interaction.The ANMZ-48 is consisting of stacking of sheet-like ZSM-48 domains connected by multiply crystal twinning sharing the common(011)plane,generating abundant of imbedded mesopores with the uniform thickness of~2.4 nm and with the width of 10-50 nm.The excellent catalytic activity and stability of ANMZ-48 were also reflected in the dry reforming of methane(DRM)reaction.
基金Sichuan Science and Technology Program,Grant/Award Number:2023YFH0026。
文摘Nickel-nitrogen-carbon single-atom catalysts have attracted widespread interest for CO_(2)electroreduction but they suffer from poor stability.Herein,we report on the preparation of Cl-and N-doped porous carbon nanosheets with atomically dispersed NiN_(4)Cl active sites(NiN_(4)Cl-ClNC)through a molten-salt-assisted pyrolysis strategy.The optimized NiN_(4)Cl-ClNC catalyst delivers exceptional CO_(2)conversion activity with outstanding stability for over 220 h at−0.7 V versus RHE and a high CO Faradaic efficiency of 98.7%at a CO partial current density of 12.4 mA cm^(−2).Moreover,NiN_(4)Cl-ClNC displays a remarkable CO partial current density of approximately 349.4 mA cm^(−2)in flow-cell,meeting the requirements of industrial applications.Operando attenuated total reflectance surface-enhanced infrared absorption spectroscopy and density functional theory calculations are used to understand the outstanding activity and stability.Results reveal that the introduced axial Ni-Cl bond on the Ni center and Cl─C bond on the carbon support synergetically induce electronic delocalization,which not only stabilizes Ni against leaching but also facilitates the formation of the COOH*intermediate that is found to be the rate-determining step.
基金supported by the National Key R&D Program of China(No.2018YFA0702003)the National Natural Science Foundation of China(Nos.21890383 and 22171157)+1 种基金L.G.W.acknowledges the funding support from the Project funded by China Postdoctoral Science Foundation(No.2022M711787)the Shuimu Tsinghua Scholar program(No.2021SM071)of Tsinghua University,China.
文摘The appropriate catalysts can accelerate the reaction rate and effectively boost the efficient conversion of various molecules,which is of great importance in the study of chemistry,chemical industry,energy,materials and environmental science.Therefore,efficient,environmentally friendly,and easy to operate synthesis methods have been used to prepare various types of catalysts.Although previous studies have reported the synthesis and characterization of the aforementioned catalysts,more still remain in trial and error methods,without in-depth consideration and improvement of traditional synthesis methods.Here,we comprehensively summarize and compare the preparation methods of the trial-and-error synthesis strategy,structure–activity relationships and density functional theory(DFT)guided catalysts rational design for nanomaterials and atomically dispersed catalysts.We also discuss in detail the utilization of the nanomaterials and single atom catalysts for converting small molecules(H_(2)O,O_(2),CO_(2),N_(2),etc.)into value-added products driven by electrocatalysis,photocatalysis,and thermocatalysis.Finally,the challenges and outlooks of mass preparation and production of efficient and green catalysts through conventional trial and error synthesis and DFT theory are featured in accordance with its current development.
基金financially supported by the National Natural Science Foundation of China(21701101)the National Key Research and Development Project,Key Projects of Intergovernmental International Innovation Cooperation(2018YFE0118200 and 2016YFF0204402)+4 种基金the Fundamental Research Funds for the Central Universities(18CX06063A)the Key Research and Development Project of Shandong Province(2019JZZY010506)the Scientific Research Awards Foundation for Outstanding Young Scientists of Shandong Province(ZR2018JL010)the Joint Fund of Outstanding Young Talents of Shandong Province(ZR2017BB018)the Program of Qingdao Scientific and Technological Innovation High-level Talents Project(172-1-1-zhc)。
文摘An atomically dispersed FeCo-NC material with the 3D flower-like morphology was used as a unique substrate for the controllable deposition of ultrasmall NiFe layered double hydroxide nanodots(termed as NiFe-NDs)to simultaneously promote the sluggish kinetics of oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).The size-limiting growth of NiFe-NDs(~4.0 nm in diameter)was realized via the confinement of the 3D flower-like mesoporous structure and the rich N/O functionality of FeCo-NC.Benefiting from the distinctive structure with the simultaneously maximum exposure of both OER and ORR active sites,the NiFe-ND/FeCo-NC composite showed an ORR halfwave potential of 0.85 V and an OER potential of 1.66 V in0.1 mol L-1KOH at 10.0 mA cm-2.In-situ Raman analysis suggested the activity of OER was derived from the Ni sites on NiFe-ND/FeCo-NC.Moreover,the NiFe-ND/FeCo-NC-assembled Zn-air battery(ZAB)exhibited a very small discharge-charge voltage gap of 0.87 V at 20 mA cm-2and robust cycling stability.Furthermore,the NiFe-ND/FeCo-NC composite was also applicable for fabricating all-solid-state ZAB to power wearable electronics with superior cycling stability under deformation.Our work could enlighten a new applicable branch of atomically dispersed metal-nitrogen-carbon materials as unique substrates for fabricating multifunctional electrocatalysts.
基金This work was supported by the National Key Research and Development Program of China(2017YFA0207302 and 2017YFA0207303)the National Natural Science Foundation of China(21890752,21731005,21420102001,21573178,and 91845102)the Fundamental Research Funds for Central Universities(20720180026).
文摘Atomically dispersed catalysts have demonstrated superior catalytic performance in many chemical transformations.However,limited success has been achieved in applying oxide-supported atomically dis-persed catalysts to semihydrogenation of alkynes under mild conditions.
基金financially supported by the National Science Foundation of China(21773112,21173119,and 21273109)the National Key Technology R&D Program of China(2017YFB0310704)the Fundamental Research Funds for the Central Universities and the Hubei Key Laboratory for Processing and Application of Catalytic Materials(CH201401)。
文摘Development of high-performance and cost-effective catalysts for electrocatalytic hydrogen evolution reaction(HER)play crucial role in the growing hydrogen economy.Recently,the atomically dispersed metal catalysts have attracted increasing attention due to their ultimate atom utilization and great potential for highly cost-effective and high-efficiency HER electrocatalyst.Herein,we propose a hightemperature treatment strategy to furtherly improve the HER performance of atomically dispersed Ptbased catalyst.Interestingly,after appropriate high-temperature treatment on the atomically dispersed Pt0.8@CN,the Pt species on the designed N-doped porous carbon substrate with rich defect sites can be re-dispersed to single atom state with new coordination environment.The obtained Pt0.8@CN-1000 shows superior HER performance with overpotential of 13 m V at 10 m A cm^(-2)and mass activity of 11,284 m A/mgPtat-0.1 V,much higher than that of the pristine Pt0.8@CN and commercial Pt/C catalyst.The experimental and theoretical investigations indicate that the high-temperature treatment induces the restructuring of coordination environment and then the optimized Pt electronic state leads to the enhanced HER performances.This work affords new strategy and insights to develop the atomically dispersed high-efficiency catalysts.
基金B.C.G.acknowledges support from the U.S.Department of Energy(DOE),Office of Science,Basic Energy Sciences(BES)(DE-FG02-04ER15513)A.K.acknowledges support from DOE BES(DE-FG02-05ER15696)J.L.acknowledges support from the National Science Foundation,Grant No.1955474(CHE-1955474).
文摘Supported catalysts that are important in technology prominently include atomically dispersed metals and metal clusters.When the metals are noble,they are typically unstablesusceptible to sinteringespecially under reducing conditions.Embedding the metals in supports such as organic polymers,metal oxides,and zeolites confers stability on the metals but at the cost of catalytic activity associated with the lack of accessibility of metal bonding sites to reactants.An approach to stabilizing noble metal catalysts while maintaining their accessibility involves anchoring them in molecular-scale nests that are in or on supports.The nests include zeolite pore mouths,zeolite surface cups(half-cages),raft-like islands of oxophilic metals bonded to metal oxide supports,clusters of non-noble metals(e.g.,hosting noble metals as single-atom alloys),and nanoscale metal oxide islands that selectively bond to the catalytic metals,isolating them from the support.These examples illustrate a trend toward precision in the synthesis of solid catalysts,and the latter two classes of nested catalysts offer realistic prospects for economical large-scale application.
基金This work was financially supported by the National Natural Science Foundation of China(No.21701101)the National Key Research and Development Project(Nos.2018YFE0118200,2016YFF0204402)+5 种基金the Fundamental Research Funds for the Central Universities(No.18CX06063A)the Long-Term Subsidy Mechanism from the Ministry of Finance and the Ministry of Education of China,the Shandong Key Research and Development Project(No.2019JZZY010506)the Shandong Scientific Research Awards Foundation for Outstanding Young Scientists(No.ZR2018JL010)the Shandong Joint Fund of Outstanding Young Talents(No.ZR2017BB018)the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents(No.2017RCJJ059)the Program for Tsingtao Al-ion Power and Energy-Storage Battery Research Team in the University(No.17-2-1-1-zhc).
文摘Carbon materials featuring hierarchical pores and atomically dispersed metal sites are promising catalysts for energy storage and conversion applications.Herein,we developed a facile strategy to construct functional carbon materials with a fluffy peony-like structure and dense binary FeCo-Nx active sites(termed as f-FeCo-CNT).By regulating the metal content in precursors,a three-dimensional(3D)interconnected conductive carbon nanotubes network was in-situ formed throughout the atomically dispersed FeCo-NC matrix during pyrolysis.Taking advantage of rich pore hierarchy and co-existence of highly active FeCo-Nx sites and beneficial FeCo alloy nanoparticles,the f-FeCo-CNT material exhibited excellent bifunctional performance towards oxygen reduction reaction/oxygen evolution reactions(ORR/OER)with respect to the atomically dispersed FeCo-NC(SA-f-FeCo-NC)and commercial Pt/C+Ru02 mixture,surpassing the SA-f-FeCo-NC with a 20 mV higher ORR half-wave potential and a 100 mV lower OER overpotential(at 10.0 mA/cm^2).Remarkably,the f-FeCo-CNT-assembled Zn-air battery(ZAB)possessed a maximum specific power of 195.8 mW/cm^2,excellent rate capability,and very good cycling stability at large current density of 20.0 mA/cm^2.This work provides a facile and feasible synthetic strategy of constructing low-cost cathode materials with excellent comprehensive ZAB performance.
基金This work was supported by the National Natural Science Foundation of China(Nos.21722103,21931005,21720102002,and 21673140)Shanghai Science and Technology Committee(No.19JC1412600)the SJTU-MPI partner group.The authors thank Shanghai Synchrotron Radiation Facility for providing beam time(No.BL14W1).
文摘The rational design of highly active and stable atomically dispersed M-X4(M=Fe,Co,Ni,etc.,X=C,N)-based catalysts holds promises for wide application in almost all realms of catalysis.Despite great effort in the construction of specific M-X4 centers,the possible effect of non-coordinated heteroatoms on the catalytic activity of metal centers has been rarely explored.Herein,we develop a new type of M-X4 catalyst composed of Fe-N4 centers and non-coordinated B heteroatoms(FeNC+B)and find the key role of non-coordinated B adjacent to Fe-N4 centers in tailoring their electron density and final catalytic selectivity.The experimental and theoretical results demonstrated that non-coordinated boron atoms could decrease the electron density of Fe-N4 centers to a suitable level and thus boost the selective production of nitriles from amine oxidation by depressing the formation of imines due to the flattened energy barrier of the reversible conversion of imines back to amines.As a reusable heterocatalyst,the state-of-the-art FeNC+B catalyst provides a turn-over frequency(TOF)value of 21.6 molbenzonitrile·molFe^−1·h^−1(100℃),outpacing that of bench-marked nonnoble-metal-based homogeneous catalyst by a factor of 3.4.
基金ShanghaiTech University Start-up Funding and the Shanghai Pujiang Talent Program,China(No.21PJ1410400).
文摘Although driven by different research interests,single-site catalysts and single-atom catalysts are both believed to be model systems bridging homogeneous and heterogeneous catalysis.The two concepts are similar but different.In this review,we will first explain the difference between single-atom catalysis and single-site catalysis,in terms of their goals,synthetic methods and coordination structures of corresponding catalysts.Then,we will introduce the surface organometallic chemistry method,a method traditionally used for synthesizing single-site catalyst.We will explain why it might benefit the single-atom catalysis community.At last,the choice of support to accommodate the method for synthesizing single-atom catalysts will be discussed.