期刊文献+
共找到195篇文章
< 1 2 10 >
每页显示 20 50 100
ATOMISTIC/CONTINUUM SIMULATION OF INTERFACIAL FRACTURE PART Ⅱ:ATOMISTIC/DISLOCATION/CONTINUUM SIMULATION 被引量:8
1
作者 谭鸿来 杨卫 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1994年第3期237-249,共13页
Coupled atomistic/dislocation/continuum simulation of interfacial fracture is performed in this paper.The model consists of a nanoscopic core made by atomistic assembly and a surrounding elastic continuum with discret... Coupled atomistic/dislocation/continuum simulation of interfacial fracture is performed in this paper.The model consists of a nanoscopic core made by atomistic assembly and a surrounding elastic continuum with discrete dislocations. Atomistic dislocations nucleate from the crack tip and move to the continuum layer where they glide according to the dislocation dynamics curve.An atoms/continuum overlapping belt is devised to facilitate the transition between the two scales.The continuum constraint on the atomic assembly is imposed through the mechanics at- mosphere along the overlapping belt.Transmissions of mechanics parameters such as displacements,stresses,masses and momenta across the belt are realized.The present model allows us to explore interfacial fracture processes under different mode mixity.The effect of atomistic zigzag interface on the fracture process is revealed:it hinders dislocation emission from the crack tip,especially under high mode mixity. 展开更多
关键词 interfacial fracture atomistic/continuum simulation mechanics atmosphere
下载PDF
ATOMISTIC/CONTINUUM SIMULATION OF INTERFACIAL FRACTURE——PART Ⅰ: ATOMISTIC SIMULATION 被引量:5
2
作者 谭鸿来 杨卫 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1994年第2期150-161,共12页
The phenomenon of interfacial fracture, as manifested by atom- istic cleavage, debonding and dislocation emission, provides a challenge for combined atomistic-continuum analysis. As a precursor for fully coupled atomi... The phenomenon of interfacial fracture, as manifested by atom- istic cleavage, debonding and dislocation emission, provides a challenge for combined atomistic-continuum analysis. As a precursor for fully coupled atomistic-continuum simulation of interfacial fracture, we focus here on the atomistic behavior within a nanoscopic core surrounding the crack tip. The inter-atomic potential under Em- bedded Atom Method is recapitulated to form an essential framework of atomistic simulation. The calculations are performed for a side-cracked disc configuration un- der a remote K field loading. It is revealed that a critical loading rate defines the brittle-to-ductile transition of homogeneous materials. We further observe that the near tip mode mixity dictates the nanoscopic profile near an interfacial crack tip. A zigzag interface structure is simulated which plays a significant role in the dislocation emission from an interfacial crack tip, as will be explored in the second part of this investigation. 展开更多
关键词 interfacial fracture atomistic simulation mode mixity loading rate zigzag interface
下载PDF
Propagation Properties of Shock Waves in Polyurethane Foam based on Atomistic Simulations 被引量:1
3
作者 Zhiqiang Hu Jianli Shao +2 位作者 Shiyu Jia Weidong Song Cheng Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期117-129,共13页
Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of poros... Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock. 展开更多
关键词 Polyurethane foam Shock wave ATTENUATION atomistic simulation
下载PDF
MicroMagnetic.jl:A Julia package for micromagnetic and atomistic simulations with GPU support
4
作者 Weiwei Wang Boyao Lyu +2 位作者 Lingyao Kong Hans Fangohr Haifeng Du 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期70-79,共10页
MicroMagnetic.jl is an open-source Julia package for micromagnetic and atomistic simulations.Using the features of the Julia programming language,MicroMagnetic.jl supports CPU and various GPU platforms,including NVIDI... MicroMagnetic.jl is an open-source Julia package for micromagnetic and atomistic simulations.Using the features of the Julia programming language,MicroMagnetic.jl supports CPU and various GPU platforms,including NVIDIA,AMD,Intel,and Apple GPUs.Moreover,MicroMagnetic.jl supports Monte Carlo simulations for atomistic models and implements the nudged-elastic-band method for energy barrier computations.With built-in support for double and single precision modes and a design allowing easy extensibility to add new features,MicroMagnetic.jl provides a versatile toolset for researchers in micromagnetics and atomistic simulations. 展开更多
关键词 micromagnetic simulations atomistic simulations graphics processing units
下载PDF
Atomistic simulation of thermal effects and defect structures during nanomachining of copper 被引量:5
5
作者 郭永博 梁迎春 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2762-2770,共9页
Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature dis... Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature distribution were discussed. The simulation results indicate that the system temperature distribution presents a roughly concentric shape, a steep temperature gradient is observed in diamond cutting tool, and the highest temperature is located in chip. Centrosymmetry parameter method was used to monitor defect structures. Dislocations and vacancies are the two principal types of defect structures. Residual defect structures impose a major change on the workpiece physical properties and machined surface quality. The defect structures in workpiece are temperature dependent. As the temperature increases, the dislocations are mainly mediated from the workpiece surface, while the others are dissociated into point defects. The relatively high cutting speed used in nanomachining results in less defect structures, beneficial to obtain highly machined surface quality. 展开更多
关键词 monocrystalline copper atomistic simulation thermal effects molecular dynamics simulation nanomachining temperature distribution defect structures dislocations VACANCIES
下载PDF
Primary and secondary modes of deformation twinning in HCP Mg based on atomistic simulations 被引量:3
6
作者 徐泓鹭 苏小明 +1 位作者 袁广银 金朝晖 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3804-3809,共6页
Deformation twinning, i.e., twin nucleation and twin growth (or twin boundary migration, TBM) activated by impinged basal slip at a symmetrical tilt grain boundary in HCP Mg, was examined with molecular dynamics (M... Deformation twinning, i.e., twin nucleation and twin growth (or twin boundary migration, TBM) activated by impinged basal slip at a symmetrical tilt grain boundary in HCP Mg, was examined with molecular dynamics (MD) simulations. The results show that the {1^-1^-21}-type twinning acts as the most preferential mode of twinning. Once such twins are formed, they are almost ready to grow. The TBM of such twins is led by pure atomic shuffling events. A secondary mode of twinning can also occur in our simulations. The {112^-2} twinning is observed at 10 K as the secondary twin. This secondary mode of twinning shows different energy barriers for nucleation as well as for growth compared with the {1^-1^-21}-type twining. In particular, TBMs in this case is triggered intrinsically by pyramidal slip at its twin boundary. 展开更多
关键词 MAGNESIUM atomistic simulation deformation twinning twin boundary migration dislocation-grain boundary interaction
下载PDF
INVESTIGATION ON APPLICABILITY OF VARIOUS STRESS DEFINITIONS IN ATOMISTIC SIMULATION 被引量:5
7
作者 Ran Xu Bin Liu 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第6期644-649,共6页
How to correctly extract Cauchy stress from the atomistic simulations is a crucial issue in studying the mechanical behaviours of atomic systems, but is still in controversy. In this paper, three typical atomistic sim... How to correctly extract Cauchy stress from the atomistic simulations is a crucial issue in studying the mechanical behaviours of atomic systems, but is still in controversy. In this paper, three typical atomistic simulation examples are used to validate various existing stress definitions. It is found that the classical virial stress fails in predicting the stresses in these examples, because the velocity depends on the choice of the local average volume or the reference frame velocity and other factors. In contrast, the Lagrangian cross-section stress and Lagrangian virial stress are validated by these examples, and the instantaneous Lagrangian atomic stress definition is also proposed for dynamical problems. 展开更多
关键词 atomic stress virial stress atomistic simulation
下载PDF
Atomistic simulation of free transverse vibration of graphene,hexagonal SiC, and BN nanosheets 被引量:1
8
作者 Danh-Truong Nguyen Minh-Quy Le +1 位作者 Thanh-Lam Bui Hai-Le Bui 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第1期132-147,共16页
Free transverse vibration of monolayer graphene, boron nitride (BN), and silicon carbide (SiC) sheets is investigated by using molecular dynamics finite element method. Eigenfrequencies and eigenmodes of these three s... Free transverse vibration of monolayer graphene, boron nitride (BN), and silicon carbide (SiC) sheets is investigated by using molecular dynamics finite element method. Eigenfrequencies and eigenmodes of these three sheets in rectangular shape are studied with different aspect ratios with respect to various boundary conditions. It is found that aspect ratios and boundary conditions affect in a similar way on natural frequencies of graphene, BN, and SiC sheets. Natural frequencies in all modes decrease with an increase of the sheet’s size. Graphene exhibits the highest natural frequencies, and SiC sheet possesses the lowest ones. Missing atoms have minor effects on natural frequencies in this study. 展开更多
关键词 atomistic simulation Hexagonal sheet Transverse vibration Molecular dynamics finite element method
下载PDF
Atomistic Simulation of Interaction between Grain Boundary and Dislocations in Ni_3Al
9
作者 Dongliang LIN(T.L.Lin) Da CHEN Min LU Department of Materials Science,Shanghai Jiaotong University,Shanghai,200030,China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1993年第5期327-337,共11页
The embedded atom type potentials and static relaxation method combined with a steepest decent computational technique have been used to simulate the interaction between the grain boundary (GB) and dislocations in Ni_... The embedded atom type potentials and static relaxation method combined with a steepest decent computational technique have been used to simulate the interaction between the grain boundary (GB) and dislocations in Ni_3Al alloys.The focus has been placed on the energy feature of the interaction,the distortion of GB structural units,and the dislocation core structure near the GB.Im- plication has also been made on the results for the understanding of the mechanism responsible for B-enhanced ductility. 展开更多
关键词 atomistic simulation grain boundary DISLOCATION Ni_3Al
下载PDF
Atomistic Simulation Study of Defect Structure of Zircon as a High-Level Nuclear Waste Host Form
10
作者 He Yong(Faculty of Material Sciences and Chemical Engineering, China University of Geosciences,Wuhan 430074, P. R. China)Cormack A. N.(New York State College of Ceramics at Alfred University, Alfred, NY, 14802, USA) 《Journal of Earth Science》 SCIE CAS CSCD 1999年第4期309-313,共5页
A set of potential parameters for modeling zircon was obtained by atomistic simulation techniques and a reasonable structural model of zircon was established by fitting some important properties of zircon.Based on the... A set of potential parameters for modeling zircon was obtained by atomistic simulation techniques and a reasonable structural model of zircon was established by fitting some important properties of zircon.Based on the equilibrium configuration of zircon, authors calculated the formation energies of basic point defects and intrinsic disorders. The heats of solution of substituting Pu for Zr showed that there was an immiscible gap at the composition of (Pu75%-Zr25%, in mole fraction), which suggests that the amount of Pu substituting for Zr in zircon be≤50%. 展开更多
关键词 ZIRCON nuclear waste host atomistic simulation technique defect structure
下载PDF
Mechanical and microstructural response of densified silica glass under uniaxial compression: Atomistic simulations
11
作者 Yi-Fan Xie Feng Feng +3 位作者 Ying-Jun Li Zhi-Qiang Hu Jian-Li Shao Yong Mei 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第10期507-514,共8页
We investigate the mechanical and microstructural changes of the densified silica glass under uniaxial loading-unloading via atomistic simulations with a modified BKS potential. The stress–strain relationship is foun... We investigate the mechanical and microstructural changes of the densified silica glass under uniaxial loading-unloading via atomistic simulations with a modified BKS potential. The stress–strain relationship is found to include three respective stages: elastic, plastic and hardening regions. The bulk modulus increases with the initial densification and will undergo a rapid increase after complete densification. The yield pressure varies from 5 to 12 GPa for different densified samples. In addition, the Si–O–Si bond angle reduces during elastic deformation under compression, and 5-fold Si will increase linearly in the plastic deformation. In the hardening region, the peak splitting and the new peak are both found on the Si–Si and O–O pair radial distribution functions, where the 6-fold Si is increased. Instead, the lateral displacement of the atoms always varies linearly with strain, without evident periodic characteristic. As is expected, the samples are permanently densified after release from the plastic region, and the maximum density of recovered samples is about 2.64 g/cm^3, which contains 15 % 5-fold Si, and the Si–O–Si bond angle is less than the ordinary silica glass. All these findings are of great significance for understanding the deformation process of densified silica glass. 展开更多
关键词 silica glass uniaxial compression DENSIFICATION atomistic simulation
下载PDF
Atomistic simulations on adhesive contact of single crystal Cu and wear behavior of Cu-Zn alloy
12
作者 You-Jun Ye Le Qin +2 位作者 Jing Li Lin Liu Ling-Kang Wu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第2期442-448,共7页
Atomistic simulations are carried out to investigate the nano-indentation of single crystal Cu and the sliding of the Cu-Zn alloy.As the contact zone is extended due to adhesive interaction between the contact atoms,t... Atomistic simulations are carried out to investigate the nano-indentation of single crystal Cu and the sliding of the Cu-Zn alloy.As the contact zone is extended due to adhesive interaction between the contact atoms,the contact area on a nanoscale is redefined.A comparison of contact area and contact force between molecular dynamics(MD)and contact theory based on Greenwood-Williamson(GW)model is made.Lower roughness causes the adhesive interaction to weaken,showing the better consistency between the calculated results by MD and those from the theoretical model.The simulations of the sliding show that the substrate wear decreases with the mol%of Zn increasing,due to the fact that the diffusion movements of Zn atoms in substrate are blocked during the sliding because of the hexagonal close packed(hcp)structure of Zn. 展开更多
关键词 atomistic simulation nano-indentation wear behavior
下载PDF
Atomistic Simulations of the Effect of Helium on the Dissociation of Screw Dislocations in Nickel
13
作者 许健 王呈斌 +3 位作者 张伟 任翠兰 龚恒风 怀平 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第2期62-66,共5页
The interactions of He with dissociated screw dislocations in face-centered-cubic (fcc) Ni are investigated by using molecular dynamics simulations based on an embedded-atom method model. The binding and formation e... The interactions of He with dissociated screw dislocations in face-centered-cubic (fcc) Ni are investigated by using molecular dynamics simulations based on an embedded-atom method model. The binding and formation energies of interstitial He in and near Shockley partial cores are calculated. The results show that interstitial He atoms at tetrahedral sites in the perfect fee lattice and atoms occupying sites one plane above or below one of the two Shockley partial cores exhibit the strongest binding energy. The attractive or repulsive nature of the interaction between interstitial He and the screw dislocation depends on the relative position of He to these strong binding sites. In addition, the effect of He on the dissociation of screw dislocations are investigated. It is found that Fie atoms homogeneously distributed in the glide plane can reduce the stacking fault width. 展开更多
关键词 of in atomistic simulations of the Effect of Helium on the Dissociation of Screw Dislocations in Nickel on IS were
下载PDF
Numerical simulation for macrosegregation in direct-chill casting of 2024 aluminum alloy with an extended continuum mixture model 被引量:9
14
作者 Hai-jun LUO Wan-qi JIE +1 位作者 Zhi-ming GAO Yong-jian ZHENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第5期1007-1015,共9页
An extended continuum mixture model for macrosegregation is applied to predicting Cu and Mg segregation in large-size ingot of 2024 aluminum alloy during direct chill casting(DC). A microsegregation model using the ... An extended continuum mixture model for macrosegregation is applied to predicting Cu and Mg segregation in large-size ingot of 2024 aluminum alloy during direct chill casting(DC). A microsegregation model using the approximate phase diagram data was coupled with macroscopic transport equations for macrosegregation profiles. Then, the impacts of transport mechanisms on the formation of macrosegregation were discussed. It is found that copper and magnesium have a similar segregation configuration from the billet center to surface. Negative segregation is observed in the centerline and subsurface, whereas positive segregation is obtained in the surface and somewhat underestimated positive segregation in the middle radius. Further, the discrepancy between the predicted and experimental results was discussed in detail. The results show that the magnesium to some extent alleviates the copper segregation in ternary alloy, compared with that in binary alloy. The predicted results show good agreement with measured experimental data obtained from literatures. 展开更多
关键词 direct-chill casting MACROSEGREGATION numerical simulation continuum model 2024 aluminum alloy
下载PDF
Atomistic evaluation of tension–compression asymmetry in nanoscale body-centered-cubic AlCrFeCoNi high-entropy alloy
15
作者 邢润龙 刘雪鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期613-622,共10页
The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In... The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In this study,the tension–compression asymmetry of the BCC Al Cr Fe Co Ni HEA nanowire is investigated using molecular dynamics simulations. The results show a significant asymmetry in both the yield and flow stresses, with BCC HEA nanowire stronger under compression than under tension. The strength asymmetry originates from the completely different deformation mechanisms in tension and compression. In compression, atomic amorphization dominates plastic deformation and contributes to the strengthening, while in tension, deformation twinning prevails and weakens the HEA nanowire.The tension–compression asymmetry exhibits a clear trend of increasing with the increasing nanowire cross-sectional edge length and decreasing temperature. In particular, the compressive strengths along the [001] and [111] crystallographic orientations are stronger than the tensile counterparts, while the [110] crystallographic orientation shows the exactly opposite trend. The dependences of tension–compression asymmetry on the cross-sectional edge length, crystallographic orientation,and temperature are explained in terms of the deformation behavior of HEA nanowire as well as its variations caused by the change in these influential factors. These findings may deepen our understanding of the tension–compression asymmetry of the BCC HEA nanowires. 展开更多
关键词 high-entropy alloys body-centered-cubic NANOWIRE tension–compression asymmetry atomistic simulations
下载PDF
Numerical Simulation of Transport Phenomena in Solidification of Multicomponent Ingot Using a Continuum Model
16
作者 Daming XU Guangju SI Geying AN and QingChun LI School of Materials Science and Engineering, Harbin institute of Technology, Harbin 150001, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第1期67-68,共2页
A continuum model proposed for dendrite solidification of multicomponent alloys, with any partial solid back diffusion, was used to numerically simulate the macroscopic solidification transport phenomena and macrosegr... A continuum model proposed for dendrite solidification of multicomponent alloys, with any partial solid back diffusion, was used to numerically simulate the macroscopic solidification transport phenomena and macrosegregations in an upwards directionally solidified plain carbon steel ingot. The computational results of each macroscopic field of the physical variables involved in the solidification process at a middle solidification stage were presented. 展开更多
关键词 simulation Numerical simulation of Transport Phenomena in Solidification of Multicomponent Ingot Using a continuum Model
下载PDF
The dynamical complexity of work-hardening:a large-scale molecular dynamics simulation 被引量:1
17
作者 MarkusJ.Buehler AlexanderHartmaier +2 位作者 MarkA.Duchaineau FaridEAbraham HuajianGao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第2期103-111,共9页
We analyze a large-scale molecular dynamics simulation of work hardening in a model system of a ductile solid. With tensile loading, we observe emission of thousands of dislocations from two sharp cracks. The dislocat... We analyze a large-scale molecular dynamics simulation of work hardening in a model system of a ductile solid. With tensile loading, we observe emission of thousands of dislocations from two sharp cracks. The dislocations interact in a complex way, revealing three fundamental mechanisms of work-hardening in this ductile material. These are (1) dislocation cutting processes, jog formation and generation of trails of point defects; (2) activation of secondary slip systems by Frank-Read and cross-slip mechanisms; and (3) formation of sessile dislocations such as Lomer-Cottrell locks. We report the discovery of a new class of point defects referred to as trail of partial point defects, which could play an important role in situations when partial dislocations dominate plasticity. Another important result of the present work is the rediscovery of the Fleischer-mechanism of cross-slip of partial dislocations that was theoretically proposed more than 50 years ago, and is now, for the first time, confirmed by atomistic simulation. On the typical time scale of molecular dynamics simulations, the dislocations self-organize into a complex sessile defect topology. Our analysis illustrates numerous mechanisms formerly only conjectured in textbooks and observed indirectly in experiments. It is the first time that such a rich set of fundamental phenomena have been revealed in a single computer simulation, and its dynamical evolution has been studied. The present study exemplifies the simulation and analysis of the complex nonlinear dynamics of a many-particle system during failure using ultra-large scale computing. 展开更多
关键词 WORK-HARDENING Large-scale atomistic simulation Dislocation junction CROSS-SLIP
下载PDF
Atomistic calculations of surface and interfacial energies of Mg_(17)Al_(12)-Mg system 被引量:4
18
作者 F.X.Wang B.Li 《Journal of Magnesium and Alloys》 SCIE EI CAS 2018年第4期375-383,共9页
It is well known that precipitation hardening in magnesium(Mg)alloys is far less effective than in aluminum alloys.Thus,it is important to understand the surface and interfacial structure and energetics between precip... It is well known that precipitation hardening in magnesium(Mg)alloys is far less effective than in aluminum alloys.Thus,it is important to understand the surface and interfacial structure and energetics between precipitates and matrix.In upscale modeling of magnesium alloys,these energy data are of great significance.In this work,we calculated the surface and interfacial energies of Mg_(17)Al_(12)-Mg system by carefully selecting the surface or interface termination,using atomistic simulations.The results show that,the higher fraction of Mg atoms on the surface,the lower the surface energy of Mg_(17)Al_(12).The interfacial energy of Mg/Mg_(17)Al_(12)was calculated in which the Burgers orientation relationship(OR)was satisfied.It was found that the(011)P|(0002)Mg interface has the lowest interfacial energy(248 mJ/m 2).Because the Burgers OR breaks when{10¯12}twin occurs,which reorients the matrix,the interfacial energy for Mg_(17)Al_(12)and a{10¯12}twin was also calculated.The results show that after twinning,the lowest interfacial energy increases by 244 mJ/m^(2),and the interface becomes highly incoherent due to the change in orientation relationship between Mg_(17)Al_(12)and the matrix. 展开更多
关键词 Mg_(17)Al_(12) Surface energy Interfacial energy atomistic simulation
下载PDF
Computer Simulation of Cathode Materials for Lithium Ion and Lithium Batteries: A Review 被引量:2
19
作者 Ying Ma 《Energy & Environmental Materials》 SCIE EI CAS 2018年第3期148-173,共26页
Driven by the increasing demand for electrochemical energy storage,lithium ion and lithium batteries have been the subject of tremendous scientific endeavors for decades.However,limited energy density,which is bottlen... Driven by the increasing demand for electrochemical energy storage,lithium ion and lithium batteries have been the subject of tremendous scientific endeavors for decades.However,limited energy density,which is bottlenecked by available high-density cathode materials,has become a critical issue to be solved. 展开更多
关键词 atomistic simulations CATHODE lithium ion battery
下载PDF
Irradiation-induced void evolution in iron:A phase-field approach with atomistic derived parameters 被引量:1
20
作者 Yuan-Yuan Wang Jian-Hua Ding +5 位作者 Wen-Bo Liu Shao-Song Huang Xiao-Qin Ke Yun-Zhi Wang Chi Zhang Ji-Jun Zhao 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第2期363-369,共7页
A series of material parameters are derived from atomistic simulations and implemented into a phase field(PF) model to simulate void evolution in body-centered cubic(bcc) iron subjected to different irradiation do... A series of material parameters are derived from atomistic simulations and implemented into a phase field(PF) model to simulate void evolution in body-centered cubic(bcc) iron subjected to different irradiation doses at different temperatures.The simulation results show good agreement with experimental observations — the porosity as a function of temperature varies in a bell-shaped manner and the void density monotonically decreases with increasing temperatures; both porosity and void density increase with increasing irradiation dose at the same temperature. Analysis reveals that the evolution of void number and size is determined by the interplay among the production, diffusion and recombination of vacancy and interstitial. 展开更多
关键词 phase field method atomistic simulation void evolution irradiation
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部