The periodic impact force induced by tip-sample contact in a tapping mode atomic force microscope (AFM) gives rise to the non-harmonic response of a micro-cantilever. These non-harmonic signals contain the full char...The periodic impact force induced by tip-sample contact in a tapping mode atomic force microscope (AFM) gives rise to the non-harmonic response of a micro-cantilever. These non-harmonic signals contain the full characteristics of tip-sample interaction. A complete theoretical model describing the dynamical behaviour of tip-sample system was developed in this paper. An analytic formula was introduced to describe the relationship between time-varying tip-sample impact force and tip motion. The theoretical analysis and numerical results both show that the timevarying tip-sample impact force can be reconstructed by recording tip motion. This allows for the reconstruction of the characteristics of the tip-sample force, like contact time and maximum contact force. It can also explain the ability of AFM higher harmonics imaging in mapping stiffness and surface energy variations.展开更多
This paper presents a scheme for realizing the frequency up-conversion between two collective atomic modes. In the scheme two atomic samples are coupled to a cavity mode. Under the large detuning condition, the two co...This paper presents a scheme for realizing the frequency up-conversion between two collective atomic modes. In the scheme two atomic samples are coupled to a cavity mode. Under the large detuning condition, the two collective atomic modes are coupled via the virtual excitation of the cavity mode and the effective Hamiltonian corresponds to the frequency up-conversion. In the scheme the cavity mode is only virtually excited and thus the process is insensitive to cavity decay.展开更多
We propose a scheme for generation of SU(2) coherent states for an atomic ensemble and a cavity mode. In the scheme a collection of two-level atoms resonantly interact with a single-mode quantized field. Under certa...We propose a scheme for generation of SU(2) coherent states for an atomic ensemble and a cavity mode. In the scheme a collection of two-level atoms resonantly interact with a single-mode quantized field. Under certain conditions, the system can evolve from a Fock state to a highly entangled SU(2) coherent state. The operation speed increases as the number of atoms increases, which is important in view of deeoherence.展开更多
基金Project supported by the National High-Tech Research and Development Program of China (Grant No. 2007AA12Z128)
文摘The periodic impact force induced by tip-sample contact in a tapping mode atomic force microscope (AFM) gives rise to the non-harmonic response of a micro-cantilever. These non-harmonic signals contain the full characteristics of tip-sample interaction. A complete theoretical model describing the dynamical behaviour of tip-sample system was developed in this paper. An analytic formula was introduced to describe the relationship between time-varying tip-sample impact force and tip motion. The theoretical analysis and numerical results both show that the timevarying tip-sample impact force can be reconstructed by recording tip motion. This allows for the reconstruction of the characteristics of the tip-sample force, like contact time and maximum contact force. It can also explain the ability of AFM higher harmonics imaging in mapping stiffness and surface energy variations.
基金supported by the Doctoral Foundation of the Ministry of Education of China (Grant No 20070386002)
文摘This paper presents a scheme for realizing the frequency up-conversion between two collective atomic modes. In the scheme two atomic samples are coupled to a cavity mode. Under the large detuning condition, the two collective atomic modes are coupled via the virtual excitation of the cavity mode and the effective Hamiltonian corresponds to the frequency up-conversion. In the scheme the cavity mode is only virtually excited and thus the process is insensitive to cavity decay.
基金supported by the National Natural Science Foundation of China under Grant No.10674025the Doctoral Foundation of the Ministry of Education of China under Grant No.20070386002
文摘We propose a scheme for generation of SU(2) coherent states for an atomic ensemble and a cavity mode. In the scheme a collection of two-level atoms resonantly interact with a single-mode quantized field. Under certain conditions, the system can evolve from a Fock state to a highly entangled SU(2) coherent state. The operation speed increases as the number of atoms increases, which is important in view of deeoherence.