Powder extrusion, which is based on the superplastic behavior of Zn-22%A1 eutectoid alloy, was proposed to reduce the forming load and promises to provide fine microstructures in the manufacture of miniature helical g...Powder extrusion, which is based on the superplastic behavior of Zn-22%A1 eutectoid alloy, was proposed to reduce the forming load and promises to provide fine microstructures in the manufacture of miniature helical gears. The specifications of the helical gears were as follows: module, 0.3; number of teeth, 12; and helix angle, 15°. Compacted powders were consolidated by sintering and solution heat treatment. The consolidated billets consisted of lamellar and fine-grained microstructures. Extrusion experiments were carried out under the following conditions: temperature, 250 ℃; strain rates, 2.36× 10-3 s^-1 and 1.18× 10^-1 s-1. The mechanical properties of the extruded helical gears were investigated by measurement of the Vickers hardness and extrusion load, and by scanning electron microscopy.展开更多
Water atomized Fe Ni Mo steel powder, was utilized as base powder for designing powder mixtures for warm pressing. The warm pressing and sintering behaviours of the powder mixtures were studied. The results show that,...Water atomized Fe Ni Mo steel powder, was utilized as base powder for designing powder mixtures for warm pressing. The warm pressing and sintering behaviours of the powder mixtures were studied. The results show that, compared with the pressing at room temperature, the green density gain by warm pressing is within a range of 0.10 0.19 g/cm 3 and reduction in spring back is 30% 40% of the ambient, and maximum green density of 7.32 g/cm 3 at 735 MPa is obtained as the graphite mass fraction is 0.8%. It was found that sintered densities of the compacts were reduced slightly due to releasing of elastic stress stored in the compacts during sintering. The warm pressing of steel powders gives evidence for substituting the traditional double pressing and double sintering process.展开更多
A hypereutectic Al-Si alloy powder was prepared by ultrasonic gas atomization process. The morphologies, microstructure and phase constituent of the alloy powder were studied. The results showed that powder of the all...A hypereutectic Al-Si alloy powder was prepared by ultrasonic gas atomization process. The morphologies, microstructure and phase constituent of the alloy powder were studied. The results showed that powder of the alloy was very fine and its microstructure was mainly consisted of Si crystals plus intermetallic compound A19FeSi3, which were.very fine and uniformly distributed.展开更多
基金Project (2010-0008-277) supported by the NCRC (National Core Research Center) Program through the National Research Foundation of Korea,funded by the Ministry of Education,Science,and TechnologyProject (NRF-2009-K20601000004-09E0100-00410) supported by PNU-IFAM JRC
文摘Powder extrusion, which is based on the superplastic behavior of Zn-22%A1 eutectoid alloy, was proposed to reduce the forming load and promises to provide fine microstructures in the manufacture of miniature helical gears. The specifications of the helical gears were as follows: module, 0.3; number of teeth, 12; and helix angle, 15°. Compacted powders were consolidated by sintering and solution heat treatment. The consolidated billets consisted of lamellar and fine-grained microstructures. Extrusion experiments were carried out under the following conditions: temperature, 250 ℃; strain rates, 2.36× 10-3 s^-1 and 1.18× 10^-1 s-1. The mechanical properties of the extruded helical gears were investigated by measurement of the Vickers hardness and extrusion load, and by scanning electron microscopy.
文摘Water atomized Fe Ni Mo steel powder, was utilized as base powder for designing powder mixtures for warm pressing. The warm pressing and sintering behaviours of the powder mixtures were studied. The results show that, compared with the pressing at room temperature, the green density gain by warm pressing is within a range of 0.10 0.19 g/cm 3 and reduction in spring back is 30% 40% of the ambient, and maximum green density of 7.32 g/cm 3 at 735 MPa is obtained as the graphite mass fraction is 0.8%. It was found that sintered densities of the compacts were reduced slightly due to releasing of elastic stress stored in the compacts during sintering. The warm pressing of steel powders gives evidence for substituting the traditional double pressing and double sintering process.
基金This work has been supported by the Flu,tda~ion Of harbin institute of Technology for Out standing YOungScientists (No. 1832).
文摘A hypereutectic Al-Si alloy powder was prepared by ultrasonic gas atomization process. The morphologies, microstructure and phase constituent of the alloy powder were studied. The results showed that powder of the alloy was very fine and its microstructure was mainly consisted of Si crystals plus intermetallic compound A19FeSi3, which were.very fine and uniformly distributed.