期刊文献+
共找到3,981篇文章
< 1 2 200 >
每页显示 20 50 100
PREPARATION OF NANOSIZED METAL-OXIDE ULTRAFINE POWDERS BY ATOMIZING-COMBUSTION TECHNIQUE 被引量:7
1
作者 Chen Shizhu Yin Zhimin (Department of Materials Science and Technology,Central South University of Technology,Changsha 410083,China) 《Journal of Central South University》 SCIE EI CAS 1998年第2期6-8,共3页
Thenanosizedmetal-oxideofTin(Sn),Indium(In),Bismuth(Bi)andsoonarehighqualityce-ramicmaterials.Asthelateststu... Thenanosizedmetal-oxideofTin(Sn),Indium(In),Bismuth(Bi)andsoonarehighqualityce-ramicmaterials.Asthelateststudieshaveshown,pro... 展开更多
关键词 METAL OXIDE NANOSIZED POWDER atomizing COMBUSTION
下载PDF
THERMOCHEMISTRY AND MECHANISM ON THE PROCESS OF PREP ARING POWDER OF Bi_2O_3 USING MELT-ATOMIZING-COMBUSTION METHOD 被引量:3
2
作者 Zhou, Naijun Yin, Zhiminb Chen, Shizhu 《中国有色金属学会会刊:英文版》 EI CSCD 1997年第3期114-118,共5页
THERMOCHEMISTRYANDMECHANISMONTHEPROCESSOFPREPARINGPOWDEROFBi2O3USINGMELTATOMIZINGCOMBUSTIONMETHOD①ZhouNaij... THERMOCHEMISTRYANDMECHANISMONTHEPROCESSOFPREPARINGPOWDEROFBi2O3USINGMELTATOMIZINGCOMBUSTIONMETHOD①ZhouNaijun,YinZhimin,Chen... 展开更多
关键词 BISMUTH TRIOXIDE nanometer POWDER atomizing COMBUSTION THERMOCHEMISTRY
下载PDF
Nitrogen monoxide vector of ultrasonic atomizing inhalation improves vertebro-basilar artery insufficiency Hemodynamic changes are detected by transcranial Doppler test 被引量:1
3
作者 Donghong Xu Jinfeng Liu Zhaohui Li Ailing Wang Chengjun Zhao 《Neural Regeneration Research》 SCIE CAS CSCD 2007年第8期506-509,共4页
BACKGROUND: Latest researches at home and abroad indicate that glycerol trinitrate plays its function because it can metabolize into nitrogen monoxide (NO) in vivo. OBJECTIVE: To study the therapeutic effects of N... BACKGROUND: Latest researches at home and abroad indicate that glycerol trinitrate plays its function because it can metabolize into nitrogen monoxide (NO) in vivo. OBJECTIVE: To study the therapeutic effects of NO vector of ultrasonic atomizing inhalation on vertebro-basilar artery insufficiency (VBI) through transcranial Doppler (TCD) detection and serum NO content and indirect effect of TCD on cerebral blood flow changes. DESIGN: Randomized grouping and controlled clinical study. SETTING: Department of Neurology, the Fourth People's Hospital of Jinan. PARTICIPANTS: A total of 130 patients who were diagnosed as VBI were selected from Department of Neurology, the Fourth People's Hospital of Jinan from December 2001 to December 2005. The involved inpatients were checked by CT and MRI, and met the VBI diagnostic standard enacted by the Fourth National Academic Meeting of Cerebrovascular Disease in 1995. All patients and their relatives provided the confumed consent. They were randomly divided into low-dose treatment group (n =60), high-lose treatment group (n =30) and control group (n =40). METHODS: Patients in the low-dose and high-dose treatment groups were given ultrasonic atomizing inhalation of 3 mg and 5 mg glycerol trinitrate, respectively, for 20 minutes, once a day. In addition, ligustrazine and energy mixture were used once a day for three days in a course. Cases in the control group were only given ligustrazine and energy mixture. All selected cases accepted TCD, blood NO content was checked at the time of beginning, after the first time and after a period of treatment. According to the TCD test, VBI patients were divided into two groups (high-low flow velocity). The vertebral artery (VA) and basal artery (BA) of left or right sides were detected by 2 Hz detector via occipital window. MAIN OUTCOME MEASURES: ①Blood flow velocity of systolic phase, blood flow velocity of diastole phase and vascular resistance in left and right VA and BA detected by using TCD before treatment, after treatment for one course; ②content of serum NO indirectly measured by using nitric acid disoxidation technique. RESULTS: All 130 VBI patients were involved in the final analysis. ①Changes of hemodynamic indexes: Systolic phase of VA and diastole phase of BA were higher in low-dose treatment group than that in the control group after first treatment, and there was significant difference (P 〈 0.05); meanwhile, systolic phase and diastole phase of VA and systolic phase of BA were also higher in treatment group than that in the control group after one course (P 〈 0.05). However, both systolic phase and diastole phase of VA and BA were lower in high-dose treatment group than that in the control group after first treatment and one course, and there was significant difference (P 〈 0.05). ②Content of serum NO: After first treatment, there was no significant difference between low-dose treatment group and high-dose treatment group (P 〉 0.05); but both groups were higher than control group, and there was significant difference (P 〈 0.05, 0.01). CONCLUSION: NO vector of ultrasonic atomizing inhalation can improve VBI so as to improve cerebral blood-supply state. 展开更多
关键词 ultrasonic atomizing inhalation nitroglyceride vertebro-basilar artery insufficiency NITRICOXIDE ultrasonography Doppler transcranial
下载PDF
Numerical calculation of temperature and phase change during the process of atomizing spray quenching on drilling pipe 被引量:1
4
作者 QitangLi GuozengYang JianguoZhang 《Journal of University of Science and Technology Beijing》 CSCD 2003年第2期60-64,共5页
A finite element method (FEM) procedure was developed in order to simulatethe quenching process for drilling pipe (DP). The calculating model was based ontime-temperature-transformation (TTT) diagrams, and incorporate... A finite element method (FEM) procedure was developed in order to simulatethe quenching process for drilling pipe (DP). The calculating model was based ontime-temperature-transformation (TTT) diagrams, and incorporated with material properties dependenton temperature. The procedure was used to calculate the temperature-time histories, describe thephase transformations of atomizing spray quenching for DP in the welding zone, and predict thehardness distribution in radius direction after quenching in the zone. The calculated results metwell with that of experiments. It was easy to determine the parameters such as volume and pressureof the cooling water and compressed gas by use of the numerical calculation and experiments, becausethe value of convection coefficient was decided greatly by the mixture of the cooling water andcompressed gas. Moreover, the simulating results were helpful not only to design the quenchingequipment, but also to optimize the quenching process for DP's welding zone. 展开更多
关键词 FEM atomizing spray quenching drilling pipe heat-treatment
下载PDF
Experimental Study on Spray Cooling Performance of Pressure Atomizing Nozzle
5
作者 黄晓庆 张旭 《Transactions of Tianjin University》 EI CAS 2012年第3期231-235,共5页
Aiming at the problem of air-cooled condenser output limit, a spray humidification system was presented to reduce the inlet air temperature. The pressure atomizing nozzle TF8 was chosen for inlet air spray cooling, an... Aiming at the problem of air-cooled condenser output limit, a spray humidification system was presented to reduce the inlet air temperature. The pressure atomizing nozzle TF8 was chosen for inlet air spray cooling, and the spray cooling experiment with different layouts of nozzles were conducted. Through heat and mass transfer analysis, the cooling effect fitting correlation was acquired with evaporative cooling being the major cooling mechanism. The experimental results under different nozzle layouts show that when the product of dry ball and wet ball temperature difference and spray rate is smaller than 75 ~C-m3/h, opening the TF8 nozzles in row 1 and row 2 (row distance is 500 mm) has better cooling effect than those in row 1 and row 3 (row distance is 1 000 mm), while when the product is larger than 75 ~C'm3/h, opening the TF8 nozzles in row 1 and row 3 is superior in cooling effect to those in row 1 and row 2. 展开更多
关键词 pressure atomizing nozzle spray cooling fitting correlation nozzle layout
下载PDF
NUMERICAL SIMULATION OF ATOMIZATION GAS FIELDS IN VARIOUS ATOMIZING PROCESSES 被引量:3
6
作者 F.Y. Cao, J.F. Sun, C.S. Cui, J. Shen and Q.C. LiNational Key Laboratory of Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001,ChinaManuscript received 10 December 2001 in revised form 31 January 2002 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2002年第3期279-284,共6页
A Computational Fluid Dynamics Software was used to calculate the atomizing gas fields generated by a self-designed atomizer and to analyze the effects of key atomizing variables such as gas pressure and protrusion le... A Computational Fluid Dynamics Software was used to calculate the atomizing gas fields generated by a self-designed atomizer and to analyze the effects of key atomizing variables such as gas pressure and protrusion length of delivery tube on the gas flow state at the tip of or inside the delivery tube. Increasing the length of delivery tube to a certain extent, the eddy flow region with positive pressure moves away from the tip of delivery tube, which is favorable to achieve the effective atomization of the melt. 展开更多
关键词 ATOMIZATION computational fluid dynamics numerical simulation powder metallurgy
下载PDF
Strong synergy between physical and chemical properties:Insight into optimization of atomically dispersed oxygen reduction catalysts 被引量:4
7
作者 Yifan Zhang Linsheng Liu +4 位作者 Yuxuan Li Xueqin Mu Shichun Mu Suli Liu Zhihui Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期36-49,共14页
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz... Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered. 展开更多
关键词 Atomically dispersed catalysts Coordination environment Electronic orbitals Inter-site distance effect Oxygen reduction reaction
下载PDF
Oxygen‑Coordinated Single Mn Sites for Efficient Electrocatalytic Nitrate Reduction to Ammonia 被引量:2
8
作者 Shengbo Zhang Yuankang Zha +8 位作者 Yixing Ye Ke Li Yue Lin Lirong Zheng Guozhong Wang Yunxia Zhang Huajie Yin Tongfei Shi Haimin Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期147-159,共13页
Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites... Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites with atomically dispersed oxygen(O)coordination on bacterial cellulose-converted graphitic carbon(Mn-O-C).Evidence of the atomically dispersed Mn-(O-C_(2))_(4)moieties embedding in the exposed basal plane of carbon surface is confirmed by X-ray absorption spectroscopy.As a result,the as-synthesized Mn-O-C catalyst exhibits superior NitRR activity with an NH_(3)yield rate(RNH_(3))of 1476.9±62.6μg h^(−1)cm^(−2)at−0.7 V(vs.reversible hydrogen electrode,RHE)and a faradaic efficiency(FE)of 89.0±3.8%at−0.5 V(vs.RHE)under ambient conditions.Further,when evaluated with a practical flow cell,Mn-O-C shows a high RNH_(3)of 3706.7±552.0μg h^(−1)cm^(−2)at a current density of 100 mA cm−2,2.5 times of that in the H cell.The in situ FT-IR and Raman spectroscopic studies combined with theoretical calculations indicate that the Mn-(O-C_(2))_(4)sites not only effectively inhibit the competitive hydrogen evolution reaction,but also greatly promote the adsorption and activation of nitrate(NO_(3)^(−)),thus boosting both the FE and selectivity of NH_(3)over Mn-(O-C_(2))_(4)sites. 展开更多
关键词 Atomically dispersed Oxygen coordination Nitrate reduction reaction In situ spectroscopic studies Hydrogen evolution reaction
下载PDF
Single-atom Pt on carbon nanotubes for selective electrocatalysis 被引量:1
9
作者 Samuel S.Hardisty Xiaoqian Lin +1 位作者 Anthony R.J.Kucernak David Zitoun 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期63-71,共9页
Utilizing supported single atoms as catalysts presents an opportunity to reduce the usage of critical raw materials such as platinum,which are essential for electrochemical reactions such as hydrogen oxidation reactio... Utilizing supported single atoms as catalysts presents an opportunity to reduce the usage of critical raw materials such as platinum,which are essential for electrochemical reactions such as hydrogen oxidation reaction(HOR).Herein,we describe the synthesis of a Pt single electrocatalyst inside single-walled carbon nanotubes(SWCNTs)via a redox reaction.Characterizations via electron microscopy,X-ray photoelectron microscopy,and X-ray absorption spectroscopy show the single-atom nature of the Pt.The electrochemical behavior of the sample to hydrogen and oxygen was investigated using the advanced floating electrode technique,which minimizes mass transport limitations and gives a thorough insight into the activity of the electrocatalyst.The single-atom samples showed higher HOR activity than state-of-the-art 30%Pt/C while almost no oxygen reduction reaction activity in the proton exchange membrane fuel cell operating range.The selective activity toward HOR arose as the main fingerprint of the catalyst confinement in the SWCNTs. 展开更多
关键词 CONFINEMENT ELECTROCATALYSIS hydrogen PLATINUM single atom catalysts
下载PDF
Atom substitution of the solid-state electrolyte Li_(10)GeP_(2)S_(12)for stabilized all-solid-state lithium metal batteries 被引量:1
10
作者 Zijing Wan Xiaozhen Chen +3 位作者 Ziqi Zhou Xiaoliang Zhong Xiaobing Luo Dongwei Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期28-38,I0002,共12页
Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical applicati... Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical application.Among all solutions,Ge atom substitution of the solid-state electrolyte LGPS stands out as the most promising solution to this interface problem.A systematic screening framework for Ge atom substitution including ionic conductivity,thermodynamic stability,electronic and mechanical properties is utilized to solve it.For fast screening,an enhanced model Dop Net FC using chemical formulas for the dataset is adopted to predict ionic conductivity.Finally,Li_(10)SrP_(2)S_(12)(LSrPS)is screened out,which has high lithium ion conductivity(12.58 mS cm^(-1)).In addition,an enhanced migration of lithium ion across the LSr PS/Li interface is found.Meanwhile,compared to the LGPS/Li interface,LSrPS/Li interface exhibits a larger Schottky barrier(0.134 eV),smaller electron transfer region(3.103?),and enhanced ability to block additional electrons,all of which contribute to the stabilized interface.The applied theoretical atom substitution screening framework with the aid of machine learning can be extended to rapid determination of modified specific material schemes. 展开更多
关键词 Atom substitution Solid-state electrolyte Machine learning Stabilized interface
下载PDF
Synthesis and Modulation of Low-Dimensional Transition Metal Chalcogenide Materials via Atomic Substitution 被引量:1
11
作者 Xuan Wang Akang Chen +3 位作者 XinLei Wu Jiatao Zhang Jichen Dong Leining Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期49-94,共46页
In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterpart... In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized. 展开更多
关键词 Transition metal chalcogenides Atomic substitution Ion exchange Low-dimensional materials Controllable synthesis
下载PDF
A frequency servo SoC with output power stabilization loop technology for miniaturized atomic clocks 被引量:1
12
作者 Hongyang Zhang Xinlin Geng +3 位作者 Zonglin Ye Kailei Wang Qian Xie Zheng Wang 《Journal of Semiconductors》 EI CAS CSCD 2024年第6期13-22,共10页
A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL... A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time. 展开更多
关键词 CMOS technology atomic clock phase-locked loop output power stabilization 1PPS
下载PDF
Building Feedback-Regulation System Through Atomic Design for Highly Active SO_(2)Sensing 被引量:1
13
作者 Xin Jia Panzhe Qiao +8 位作者 Xiaowu Wang Muyu Yan Yang Chen Bao-Li An Pengfei Hu Bo Lu Jing Xu Zhenggang Xue Jiaqiang Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期343-357,共15页
Reasonably constructing an atomic interface is pronouncedly essential for surface-related gas-sensing reaction.Herein,we present an ingen-ious feedback-regulation system by changing the interactional mode between sing... Reasonably constructing an atomic interface is pronouncedly essential for surface-related gas-sensing reaction.Herein,we present an ingen-ious feedback-regulation system by changing the interactional mode between single Pt atoms and adjacent S species for high-efficiency SO_(2)sensing.We found that the single Pt sites on the MoS_(2)surface can induce easier volatiliza-tion of adjacent S species to activate the whole inert S plane.Reversely,the activated S species can provide a feedback role in tailoring the antibonding-orbital electronic occupancy state of Pt atoms,thus creating a combined system involving S vacancy-assisted single Pt sites(Pt-Vs)to synergistically improve the adsorption ability of SO_(2)gas molecules.Further-more,in situ Raman,ex situ X-ray photoelectron spectroscopy testing and density functional theory analysis demonstrate the intact feedback-regulation system can expand the electron transfer path from single Pt sites to whole Pt-MoS_(2)supports in SO_(2)gas atmosphere.Equipped with wireless-sensing modules,the final Pt1-MoS_(2)-def sensors array can further realize real-time monitoring of SO_(2)levels and cloud-data storage for plant growth.Such a fundamental understanding of the intrinsic link between atomic interface and sensing mechanism is thus expected to broaden the rational design of highly effective gas sensors. 展开更多
关键词 Feedback-regulation system Atomic interface SO_(2)sensor Single-atom sensing mechanism Intelligent-sensing array
下载PDF
Influence of ion species on extraction characteristicsof mixed ion beams
14
作者 Ao Xu Pingping Gan +1 位作者 Xiang Wan Yuanjie Shi 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期444-449,共6页
The spatial distributions of different kinds of ions are usually not completely the same in the process of extracting.In order to study the reason for the different characteristics of ion extraction, a simplified simu... The spatial distributions of different kinds of ions are usually not completely the same in the process of extracting.In order to study the reason for the different characteristics of ion extraction, a simplified simulation model of Cu+ andCr+ ions extraction process was established by 2D3V (two-dimensional in space and three- dimensional in velocity space)particle-in-cell (PIC) method. The effects of different extraction voltages from 0 V to 500 V on the density distribution ofCu+ and Cr+ ions and the change of plasma emission surface were analyzed. On the basis of this model, the ion densitydistribution characteristics of Cu+ ions mixed with Li+, Mg+, K+, Fe+, Y+, Ag+, Xe+, Au+, and Pb+ ions respectivelyunder 200-V extraction voltage are further simulated, and it is revealed that the atomic mass of the ions is the key reason fordifferent ion density distributions when different kinds of ions are mixed and extracted, which provides support for furtherunderstanding of ion extraction characteristics. 展开更多
关键词 extraction ION SPECIES density distribution ATOMIC mass
下载PDF
Precise construction of RuPt dual single-atomic sites to optimize oxygen electrocatalytic behaviors for high-performance Zn-air batteries
15
作者 Xiaolin Hu Zhenkun Wu Chaohe Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期520-528,I0011,共10页
The development of redox bifunctional electrocatalysts with high performance,low cost,and long lifetimes is essential for achieving clean energy goals.This study proposed an atom capture strategy for anchoring dual si... The development of redox bifunctional electrocatalysts with high performance,low cost,and long lifetimes is essential for achieving clean energy goals.This study proposed an atom capture strategy for anchoring dual single atoms(DSAs)in a zinc-zeolitic imidazolate framework(Zn-ZIF),followed by calcination under an N_(2) atmosphere to synthesize ruthenium-platinum DSAs supported on a nitrogendoped carbon substrate(RuPt DSAs-NC).Theoretical calculations showed that the degree of Ru 5dxz-~*O 2p_x orbital hybridization was high when^(*)O was adsorbed at the Ru site,indicating enhanced covalent hybridization of metal sites and oxygen ligands,which benefited the adsorption of intermediate species.The presence of the RuPtN_6 active center optimized the absorption-desorption behavior of intermediates,improving the electrocatalytic performance of the oxygen reduction reaction(ORR)and the oxygen evolution reaction(DER),RuPt DSAs-NC exhibited a 0.87 V high half-wave potential and a 268 mV low overpotential at 10 mA cm^(-2)in an alkaline environment.Furthermore,rechargeable zinc-air batteries(ZABs)achieved a peak power density of 171 MW cm^(-2).The RuPt DSAs-NC demonstrated long-term cycling for up to 500 h with superior round-trip efficiency.This study provided an effective structural design strategy to construct DSAs active sites for enhanced electrocata lytic performance. 展开更多
关键词 Dual single atoms catalysts Atom capture Oxygen reduction reaction Oxygen evolution reaction Rechargeable Zn-air batteries
下载PDF
A simple atomization approach enables monolayer dispersion of nano graphenes in cementitious composites with excellent strength gains
16
作者 Nanxi Dang Rijiao Yang +4 位作者 Chengji Xu Yu Peng Qiang Zeng Weijian Zhao Zhidong Zhang 《Nano Materials Science》 EI CAS CSCD 2024年第2期211-222,共12页
Carbon nano additives(CNAs)are critical to achieving the unique properties of functionalized composites,however,controlling the dispersion of CNAs in material matrix is always a challenging task.In this study,a simple... Carbon nano additives(CNAs)are critical to achieving the unique properties of functionalized composites,however,controlling the dispersion of CNAs in material matrix is always a challenging task.In this study,a simple atomization approach was successfully developed to promote the dispersion efficiency of graphene nanoplatelets(GNPs)in cement composites.This atomization approach can be integrated with the direct,indirect and combined ultrasonic stirrings in a homemade automatic stirring-atomization device.Mechanical and microstructure tests were performed on hardened cement pastes blended with GNPs in different stirring and mixing approaches.Results show that the direct ultrasonic stirrings enabled more homogeneous dispersions of GNP particles with a smaller size for a longer duration.The atomized droplets with the mean size of~100μm largely mitigated GNPs’agglomerations.Monolayer GNPs were observed in the cement matrix with the strength gain by up to 54%,and the total porosity decrease by 21%in 0.3 wt%GNPs dosage.The greatly enhanced dispersion efficiency of GNPs in cement also raised the cement hydration.This work provides an effective and manpower saving technique toward dispersing CNAs in engineering materials with great industrialization prospects. 展开更多
关键词 NANOMATERIALS DISPERSION ATOMIZATION STRENGTH Microstructure
下载PDF
Nanomotion of bacteria to determine metabolic profile
17
作者 S.N.Pleskova E.V.Lazarenko +4 位作者 N.A.Bezrukov R.N.Kriukov A.V.Boryakov M.E.Dokukin S.I.Surodin 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期1-9,共9页
In addition to their visible motion such as swimming(e.g.,with the help offlagella),bacteria can also exhibit nanomotion that is detectable only with highly sensitive instruments,and this study shows that it is possibl... In addition to their visible motion such as swimming(e.g.,with the help offlagella),bacteria can also exhibit nanomotion that is detectable only with highly sensitive instruments,and this study shows that it is possible to detect bacterial nanomotion using an AFM detection system.The results show that the nanomotion characteristics depend on the bacterial strain,and that nanomotion can be used to sense the metabolic activity of bacteria because the oscillations are sensitive to the food preferences of the bacteria and the type of surrounding medium. 展开更多
关键词 Nanomotion BACTERIA CANTILEVER OSCILLATION Atomic force microscopy METABOLISM
下载PDF
Metal-organic framework-based single-atom electro-/ photocatalysts: Synthesis, energy applications, and opportunities
18
作者 Munir Ahmad Jiahui Chen +10 位作者 Jianwen Liu Yan Zhang Zhongxin Song Shahzad Afzal Waseem Raza Liaqat Zeb Andleeb Mehmood Arshad Hussain Jiujun Zhang Xian-Zhu Fu Jing-Li Luo 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期1-43,共43页
Single-atom catalysts(SACs)have gained substantial attention because of their exceptional catalytic properties.However,the high surface energy limits their synthesis,thus creating significant challenges for further de... Single-atom catalysts(SACs)have gained substantial attention because of their exceptional catalytic properties.However,the high surface energy limits their synthesis,thus creating significant challenges for further development.In the last few years,metal–organic frameworks(MOFs)have received significant consideration as ideal candidates for synthesizing SACs due to their tailorable chemistry,tunable morphologies,high porosity,and chemical/thermal stability.From this perspective,this review thoroughly summarizes the previously reported methods and possible future approaches for constructing MOF-based(MOF-derived-supported and MOF-supported)SACs.Then,MOF-based SAC's identification techniques are briefly assessed to understand their coordination environments,local electronic structures,spatial distributions,and catalytic/electrochemical reaction mechanisms.This review systematically highlights several photocatalytic and electrocatalytic applications of MOF-based SACs for energy conversion and storage,including hydrogen evolution reactions,oxygen evolution reactions,O_(2)/CO_(2)/N_(2) reduction reactions,fuel cells,and rechargeable batteries.Some light is also shed on the future development of this highly exciting field by highlighting the advantages and limitations of MOF-based SACs. 展开更多
关键词 carbon energy generation MOF-derived-supported MOF-supported single atoms
下载PDF
Atomic layer deposition in advanced display technologies:from photoluminescence to encapsulation
19
作者 Rong Chen Kun Cao +4 位作者 Yanwei Wen Fan Yang Jian Wang Xiao Liu Bin Shan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期65-82,共18页
Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots ... Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots and phosphors,etc.Nevertheless,the primary challenge preventing the practical application of these luminescent materials lies in meeting the required durability standards.Atomic layer deposition(ALD)has,therefore,been employed to stabilize luminescent materials,and as a result,flexible display devices have been fabricated through material modification,surface and interface engineering,encapsulation,cross-scale manufacturing,and simulations.In addition,the appropriate equipment has been developed for both spatial ALD and fluidized ALD to satisfy the low-cost,high-efficiency,and high-reliability manufacturing requirements.This strategic approach establishes the groundwork for the development of ultra-stable luminescent materials,highly efficient light-emitting diodes(LEDs),and thin-film packaging.Ultimately,this significantly enhances their potential applicability in LED illumination and backlighted displays,marking a notable advancement in the display industry. 展开更多
关键词 atomic layer deposition DISPLAY LUMINESCENT ENCAPSULATION
下载PDF
Advances of Synergistic Electrocatalysis Between Single Atoms and Nanoparticles/Clusters
20
作者 Guanyu Luo Min Song +6 位作者 Qian Zhang Lulu An Tao Shen Shuang Wang Hanyu Hu Xiao Huang Deli Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期377-412,共36页
Combining single atoms with clusters or nanoparticles is an emerging tactic to design efficient electrocatalysts.Both synergy effect and high atomic utilization of active sites in the composite catalysts result in enh... Combining single atoms with clusters or nanoparticles is an emerging tactic to design efficient electrocatalysts.Both synergy effect and high atomic utilization of active sites in the composite catalysts result in enhanced electrocatalytic performance,simultaneously provide a radical analysis of the interrelationship between structure and activity.In this review,the recent advances of single-atomic site catalysts coupled with clusters or nanoparticles are emphasized.Firstly,the synthetic strategies,characterization,dynamics and types of single atoms coupled with clusters/nanoparticles are introduced,and then the key factors controlling the structure of the composite catalysts are discussed.Next,several clean energy catalytic reactions performed over the synergistic composite catalysts are illustrated.Eventually,the encountering challenges and recommendations for the future advancement of synergistic structure in energy-transformation electrocatalysis are outlined. 展开更多
关键词 Single atoms NANOPARTICLES CLUSTERS Synergistic composite catalysts Synergistic effect
下载PDF
上一页 1 2 200 下一页 到第
使用帮助 返回顶部