At the global scale, foliar metal transfer occurs for consumed vegetables cultivated in numerous urban or industrial areas with a polluted atmosphere. However, the kinetics of metal uptake, translocation and involved ...At the global scale, foliar metal transfer occurs for consumed vegetables cultivated in numerous urban or industrial areas with a polluted atmosphere. However, the kinetics of metal uptake, translocation and involved phytotoxicity was never jointly studied with vegetables exposed to micronic and sub-micronic particles(PM). Different leafy vegetables(lettuces and cabbages) cultivated in RHIZOtest? devices were, therefore, exposed in a greenhouse for 5, 10 and 15 days to various Pb O PM doses. The kinetics of transfer and phytotoxicity was assessed in relation to lead concentration and exposure duration. A significant Pb accumulation in leaves(up to 7392 mg/kg dry weight(DW) in lettuce) with translocation to roots was observed. Lead foliar exposure resulted in significant phytotoxicity, lipid composition change, a decrease of plant shoot growth(up to 68.2% in lettuce) and net photosynthesis(up to 58% in lettuce). The phytotoxicity results indicated plant adaptation to Pb and a higher sensitivity of lettuce in comparison with cabbage. Air quality needs, therefore, to be considered for the health and quality of vegetables grown in polluted areas, such as certain megacities(in China, Pakistan, Europe, etc.) and furthermore, to assess the health risks associated with their consumption.展开更多
A direct determination method for the atrazine residue on the vegetable was developed by using desorption electrospray ionization mass spectrometry (DESI MS) without any sample pretreatment.Acetonitrile-water (1:1,v/v...A direct determination method for the atrazine residue on the vegetable was developed by using desorption electrospray ionization mass spectrometry (DESI MS) without any sample pretreatment.Acetonitrile-water (1:1,v/v),which contained 0.1% formic acid,was used as the spray solvent.The working conditions,such as ESI gas inlet pressure,ESI flow rate,ESI spray voltage,spray-to-sample distance,spray-to-cone-hole distance and the collision induced dissociation (CID) voltage for MS/MS,were optimized for both DESI and esquires 6 000 mass spectrometer.The linear range of atrazine on cabbage leaves was 25.25-2 525 pg/mm2,the R2 was 0.991 6,and the relative standard deviations were between 3.37% and 26.17%.The LOD of atrazine calculated by S/N=3 was 2.50 pg/mm2.展开更多
基金financial support from Ademe(the French Agency of Sustainable Development and Energy)through the"DIMENSION"projectthe National Research Agency under reference ANR-12-0011-VBDUthe National Polytechnic Institute in Toulouse(INPT)
文摘At the global scale, foliar metal transfer occurs for consumed vegetables cultivated in numerous urban or industrial areas with a polluted atmosphere. However, the kinetics of metal uptake, translocation and involved phytotoxicity was never jointly studied with vegetables exposed to micronic and sub-micronic particles(PM). Different leafy vegetables(lettuces and cabbages) cultivated in RHIZOtest? devices were, therefore, exposed in a greenhouse for 5, 10 and 15 days to various Pb O PM doses. The kinetics of transfer and phytotoxicity was assessed in relation to lead concentration and exposure duration. A significant Pb accumulation in leaves(up to 7392 mg/kg dry weight(DW) in lettuce) with translocation to roots was observed. Lead foliar exposure resulted in significant phytotoxicity, lipid composition change, a decrease of plant shoot growth(up to 68.2% in lettuce) and net photosynthesis(up to 58% in lettuce). The phytotoxicity results indicated plant adaptation to Pb and a higher sensitivity of lettuce in comparison with cabbage. Air quality needs, therefore, to be considered for the health and quality of vegetables grown in polluted areas, such as certain megacities(in China, Pakistan, Europe, etc.) and furthermore, to assess the health risks associated with their consumption.
文摘A direct determination method for the atrazine residue on the vegetable was developed by using desorption electrospray ionization mass spectrometry (DESI MS) without any sample pretreatment.Acetonitrile-water (1:1,v/v),which contained 0.1% formic acid,was used as the spray solvent.The working conditions,such as ESI gas inlet pressure,ESI flow rate,ESI spray voltage,spray-to-sample distance,spray-to-cone-hole distance and the collision induced dissociation (CID) voltage for MS/MS,were optimized for both DESI and esquires 6 000 mass spectrometer.The linear range of atrazine on cabbage leaves was 25.25-2 525 pg/mm2,the R2 was 0.991 6,and the relative standard deviations were between 3.37% and 26.17%.The LOD of atrazine calculated by S/N=3 was 2.50 pg/mm2.