[Objectives]The paper was to screen effective biocontrol strains against Meloidogyne incognita.[Methods]The effect of six bacterial strains sourced from the research group s strain library on the activity of second in...[Objectives]The paper was to screen effective biocontrol strains against Meloidogyne incognita.[Methods]The effect of six bacterial strains sourced from the research group s strain library on the activity of second instar larvae of M.incognita,as well as on egg hatching,was evaluated.[Results]The treatment of fermentation supernatant derived from the X-2 strain exhibited a pronounced lethal effect on M.incognita,with a corrected mortality rate reaching 97%within 72 h.Additionally,this treatment significantly inhibited egg hatching,achieving an inhibition rate of 94.69%at a 20-fold dilution.The strain was identified as Bacillus velezensis,belonging to the genus Bacillus,and was designated as RKN1111.[Conclusions]This study presents alternative strains and a theoretical framework for the biological control of M.incognita.展开更多
Successful polyethylene glycol fusion(PEG-fusion)of severed axons following peripheral nerve injuries for PEG-fused axons has been reported to:(1)rapidly restore electrophysiological continuity;(2)prevent distal Walle...Successful polyethylene glycol fusion(PEG-fusion)of severed axons following peripheral nerve injuries for PEG-fused axons has been reported to:(1)rapidly restore electrophysiological continuity;(2)prevent distal Wallerian Degeneration and maintain their myelin sheaths;(3)promote primarily motor,voluntary behavioral recoveries as assessed by the Sciatic Functional Index;and,(4)rapidly produce correct and incorrect connections in many possible combinations that produce rapid and extensive recovery of functional peripheral nervous system/central nervous system connections and reflex(e.g.,toe twitch)or voluntary behaviors.The preceding companion paper describes sensory terminal field reo rganization following PEG-fusion repair of sciatic nerve transections or ablations;howeve r,sensory behavioral recovery has not been explicitly explored following PEG-fusion repair.In the current study,we confirmed the success of PEG-fusion surgeries according to criteria(1-3)above and more extensively investigated whether PEG-fusion enhanced mechanical nociceptive recovery following sciatic transection in male and female outbred Sprague-Dawley and inbred Lewis rats.Mechanical nociceptive responses were assessed by measuring withdrawal thresholds using von Frey filaments on the dorsal and midplantar regions of the hindpaws.Dorsal von Frey filament tests were a more reliable method than plantar von Frey filament tests to assess mechanical nociceptive sensitivity following sciatic nerve transections.Baseline withdrawal thresholds of the sciatic-mediated lateral dorsal region differed significantly across strain but not sex.Withdrawal thresholds did not change significantly from baseline in chronic Unoperated and Sham-operated rats.Following sciatic transection,all rats exhibited severe hyposensitivity to stimuli at the lateral dorsal region of the hindpaw ipsilateral to the injury.However,PEG-fused rats exhibited significantly earlier return to baseline withdrawal thresholds than Negative Control rats.Furthermore,PEG-fused rats with significantly improved Sciatic Functional Index scores at or after 4 weeks postoperatively exhibited yet-earlier von Frey filament recove ry compared with those without Sciatic Functional Index recovery,suggesting a correlation between successful PEG-fusion and both motor-dominant and sensory-dominant behavioral recoveries.This correlation was independent of the sex or strain of the rat.Furthermore,our data showed that the acceleration of von Frey filament sensory recovery to baseline was solely due to the PEG-fused sciatic nerve and not saphenous nerve collateral outgrowths.No chronic hypersensitivity developed in any rat up to 12 weeks.All these data suggest that PEG-fusion repair of transection peripheral nerve injuries co uld have important clinical benefits.展开更多
Exploitation of oxygen evolution reaction(OER)and urea oxidation reaction(UOR)catalysts with high activity and stability at large current density is a major challenge for energy-saving H_(2) production in water electr...Exploitation of oxygen evolution reaction(OER)and urea oxidation reaction(UOR)catalysts with high activity and stability at large current density is a major challenge for energy-saving H_(2) production in water electrolysis.Herein,we use the pyridinic-N doping carbon layers coupled with tensile strain of FeNi alloy activated by NiFe_(2)O_(4)(FeNi/NiFe_(2)O_(4)@NC)for efficiently increasing the performance of water and urea oxidation.Due to the tensile strain effect on FeNi/NiFe_(2)O_(4)@NC,it provides a favorable modulation on the electronic properties of the active center,thus enabling amazing OER(η_(100)=196 mV)and UOR(E_(10)=1.32 V)intrinsic activity.Besides,the carbon-coated layers can be used as armor to prevent FeNi alloy from being corroded by the electrolyte for enhancing the OER/UOR stability at large current density,showing high industrial practicability.This work thus provides a simple way to prepare high-efficiency catalyst for activating water and urea oxidation.展开更多
Objective The mode of human immunodeficiency virus(HIV) transmission via injection drug use(IDU)still exists, and the recent shift in IDU-related transmission of HIV infection is largely unknown. The purpose of this s...Objective The mode of human immunodeficiency virus(HIV) transmission via injection drug use(IDU)still exists, and the recent shift in IDU-related transmission of HIV infection is largely unknown. The purpose of this study was to analyze the spatiotemporal sources and dynamics of HIV-1 transmission through IDU in Guangxi.Methods We performed a molecular epidemiological investigation of infections across Guangxi from2009 to 2019. Phylogenetic and Bayesian time-geographic analyses of HIV-1 sequences were performed to confirm the characteristics of transmission between IDUs in combination with epidemiological data.Results Among the 535 subjects, CRF08_BC(57.4%), CRF01_AE(28.4%), and CRF07_BC(10.7%) were the top 3 HIV strains;72.6% of infections were linked to other provinces in the transmission network;93.6% of sequence-transmitted strains were locally endemic, with the rest coming from other provinces,predominantly Guangdong and Yunnan;92.1% of the HIV transmission among people who inject drugs tended to be transmitted between HIV-positive IDUs.Conclusion HIV recombinants were high diversity, and circulating local strains were the transmission sources among IDUs in Guangxi. However, there were still cases of IDUs linked to other provinces.Coverage of traditional prevention strategies should be expanded, and inter-provincial collaboration between Guangxi, Yunnan, and Guangdong provinces should be strengthened.展开更多
Plants have always been used by people for therapeutic purposes. They are still the main source of therapeutic substances in developing countries. Crateva adansonii, a member of the Capparidaceae family, is a medicina...Plants have always been used by people for therapeutic purposes. They are still the main source of therapeutic substances in developing countries. Crateva adansonii, a member of the Capparidaceae family, is a medicinal plant with antibacterial properties used in Benin. The aim of this study was to assess the efficacy of an aqueous extract of C. adansonii on bacterial strains isolated from chronic wounds in the Ouinhi population. To achieve this, the bacterial flora present in chronic wounds was identified using the Ikram method (2014) coupled with the API Remoel One method. The antibacterial properties of the aqueous extract of C. adansonii on the microbial strains isolated were then assessed by determining the Inhibition Diameters (ID), the Minimum Inhibitory Concentrations (MIC) and finally the Minimum Bactericidal Concentrations (MBC). A total of eighty (80) strains were isolated and identified on the basis of morphological, cultural and biochemical characteristics. The species S. Aureus species accounted for the largest proportion (67.5%). Other species such as Listeria sp, Pseudomonas proteus, S. epidermidis and Bacillus cereus, Citrobacter freundii, Steno maltophila;Axin calcoaceticus, E. coli, K. pneumonia, Lem. richardii, Salmonella paratyphi A, Salmonella sp, Shigella sp were determined in variable proportions. At a concentration of 10 mg/ml, only S. aureus was sensitive to contact with the extract. However, at 20 mg/ml, 89% of strains were sensitive and 11% very sensitive. The highly sensitive strains are Salmonella sp and E. coli. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) are 20 mg/ml and 40 mg/ml respectively. The MBC/MIC ratio of the aqueous mixture of Crateva adansonii (Capparidaceae) varied from 1.2 to 2, with a bactericidal effect on 100% of the strains tested.展开更多
The occurrence of sexual reproduction accelerates the population genetic variation of Phytophthora infestans and makes it more difficult to control.The systematic analysis of the differentiation of phenotype(mating ty...The occurrence of sexual reproduction accelerates the population genetic variation of Phytophthora infestans and makes it more difficult to control.The systematic analysis of the differentiation of phenotype(mating type and metalaxyl sensitivity)and genotype(mtDNA haplotype and SSR genotype)of 65 single oospore strains of P.infestans was carried out in this article.Five test strains were isolated from Heilongjiang Province and Mongolia Autonomous Region.The experiment results showed that the isolation ratio of metalaxyl resistance(MR:HR)of single oospore strains produced through the cross of medium resistance and high resistant parents was 18:13;the isolation ratio of the metalaxyl resistance(S:MR:HR)of single oospore strains produced through the cross of sensitive and high resistant parents was 4:12:7.The progenies of single oospore strains produced through self-fertility parents with medium resistance were all of the medium resistance.The mating types A1:A2 was greater than 1:1 in single oospore strains of the progenies,which did not conform to the Mendel's law of inheritance.All single oospore strains of the progenies inherited mitochondrial DNA fragments from only one parent.Sexual recombination of single oospore strains was verified by using two pairs of SSR primers(Pi4B and Pi4G).At the locus of Pi4B and Pi4G in the cross of KS-37 and KS-25,the separation frequencies of allele were 19:12 and 14:17,respectively.They produced two new genotype strains.This study could provide a basis for formulating disease control strategies.展开更多
The oxygen evolution reaction(OER)is a crucial step in metal-air batteries and water splitting technologies,playing a significant role in the efficiency and achievable heights of these two technologies.However,the OER...The oxygen evolution reaction(OER)is a crucial step in metal-air batteries and water splitting technologies,playing a significant role in the efficiency and achievable heights of these two technologies.However,the OER is a four-step,four-electron reaction,and its slow kinetics result in high overpotentials,posing a challenge.To address this issue,numerous strategies involving modified catalysts have been proposed and proven to be highly efficient.In these strategies,the introduction of strain has been widely reported because it is generally believed to effectively regulate the electronic structure of metal sites and alter the adsorption energy of catalyst surfaces with reaction intermediates.However,strain has many other effects that are not well known,making it an important yet unexplored area.Based on this,this review provides a detailed introduction to the various roles of strain in OER.To better explain these roles,the review also presents the definition of strain and elucidates the potential mechanisms of strain in OER based on the d-band center theory and adsorption volcano plot.Additionally,the review showcases various ways of introducing strain in OER through examples reported in the latest literature,aiming to provide a comprehensive perspective for the development of strain engineering.Finally,the review analyzes the appropriate proportion of strain introduction,compares compressive and tensile strain,and examines the impact of strain on stability.And the review offers prospects for future research directions in this emerging field.展开更多
In automobile wheel application, a test rig is vital and used to simulate conditions of the wheel in service in order to affirm the safety and reliability of the wheel. The present work designed a test rig for measuri...In automobile wheel application, a test rig is vital and used to simulate conditions of the wheel in service in order to affirm the safety and reliability of the wheel. The present work designed a test rig for measuring axial strains in automobile wheel. The wheel used was a five-arm wheel (6JX14H2;ET 42) and Tyre (175 × 65 R 14). Experimental (EXP) test was carried out, with a radial load of 4750 N and inflation pressure of 0.3 MPa, to measure the axil strains which were converted to maximum principal strain values and, compared with data from Finite Element Analysis (FEA) using Creo-Element/Pro 5.0 at wheel’s contact angles of 90 degree (FEA 90 deg), 40 degree (FEA 40 deg) and 30.25 degree (FEA 30.25 deg), respectively. Results show that at the wheel’s point of contact with the ground, maximum principal strain values were highest at the inboard bead seat with a value of about 5.69 × 10<sup>-4</sup> mm/mm, followed by the values at the well of about 5.66 × 10<sup>-4</sup> mm/mm. The value at the outboard bead seat was least at about 2.22 × 10<sup>-4</sup> mm/mm, which was due to the presence of spikes at this location that tends to resist imposed radial loads. However, the highest mean maximum principal strain values at the locations of inboard, well and outboard, were about 2.11 × 10<sup>-4</sup> mm/mm, 3.78 × 10<sup>-4</sup> mm/mm and .99 × 10<sup>-4</sup> mm/mm, respectively. With the highest single value of about 5.69 × 10<sup>-4</sup> mm/mm, the inboard bead seat was the most strained location of the wheel. Overall results showed that all values of maximum principal strains were below the threshold value of about 1 × 10<sup>-2</sup> mm/mm. The values obtained for EXP and FEA could be said to be in close agreement when compared with the threshold value. With this in mind, the rig is recommended for use in related experimental procedures.展开更多
Nanorubber/epoxy composites containing 0,2,6 and 10 wt%nanorubber are subjected to uniaxial compression over a wide range of strain rate from 8×10^(-4) s^(-1) to~2×10^(4) s^(-1).Unexpectedly,their strain rat...Nanorubber/epoxy composites containing 0,2,6 and 10 wt%nanorubber are subjected to uniaxial compression over a wide range of strain rate from 8×10^(-4) s^(-1) to~2×10^(4) s^(-1).Unexpectedly,their strain rate sensitivity and strain hardening index increase with increasing nanorubber content.Potential mechanisms are proposed based on numerical simulations using a unit cell model.An increase in the strain rate sensitivity with increasing nanorubber content results from the fact that the nanorubber becomes less incompressible at high strain,generating a higher hydro-static pressure.Adiabatic shear localization starts to occur in the epoxy under a strain rate of 22,000 s^(-1) when the strain exceeds 0.35.The presence of nanorubber in the epoxy reduces adiabatic shear localization by preventing it from propagating.展开更多
Introduction: The improvement of survival in patients with cancer and the expansion of therapeutic options have led to the emergence of a new profile of cardiotoxicity, specifically associated with antimitotic agents....Introduction: The improvement of survival in patients with cancer and the expansion of therapeutic options have led to the emergence of a new profile of cardiotoxicity, specifically associated with antimitotic agents. Our study aimed to assess the incidence of chemotherapy-induced myocardial toxicity in patients with cancer. Patients and Methods: We conducted a looking-forward longitudinal cohort study including all patients admitted to the Cardiology departments of Aristide le Dantec Hospital and Dalal Jamm National Hospital Centre for apre-chemotherapy check-up. The included patients did not undergo any pre-existing cardiopathy. Results: Over a period of two years ranging from January 2019 to December 2021, a total of 37 patients were included in the study. Notably, there was a female predominance (92%) with an average age of 49.7 years ± 13.69. Breast cancer accounted for 70% of the neoplasms. Laboratory findings revealed moderate anemia in 19 patients (51%). At inclusion, the left ventricle (LV) was of normal size (LV diastole at 44.46 ± 4.97 mm). The systolic function of the left ventricle was normal in all patients, with an average ejection fraction (EF) of 63.1% ± 5.80 and a mean global longitudinal strain (GLS) of −20.4% ± 2.58. The most commonly used agents were anthracyclines. During follow-up, 3 patients (8.1%) developed clinical symptoms of left heart failure, and LV dysfunction on echocardiography was observed in 5 (13.5%) patients, with a significant decrease in EF Conclusion: The incidence of cardiac toxicity is not negligible, hence the importance of early screening. Strain imaging is an essential tool that should be performed as part of the assessment before chemotherapy and re-evaluated during treatment.展开更多
Phase transitions involving oxygen ion extraction within the framework of the crystallographic relevance have been widely exploited for sake of superconductivity,ferromagnetism,and ion conductivity in perovskiterelate...Phase transitions involving oxygen ion extraction within the framework of the crystallographic relevance have been widely exploited for sake of superconductivity,ferromagnetism,and ion conductivity in perovskiterelated oxides.However,atomic-scale pathways of phase transitions and ion extraction threshold are inadequately understood.Here we investigate the atomic structure evolution of LaCoO_(3) films upon oxygen extraction and subsequent Co migration,focusing on the key role of epitaxial strain.The brownmillerite to Ruddlesden-Popper phase transitions are discovered to stabilize at distinct crystal orientations in compressive-and tensile-strained cobaltites,which could be attributed to in-plane and out-of-plane Ruddlesden-Popper stacking faults,respectively.A two-stage process from exterior to interior phase transition is evidenced in compressive-strained LaCoO_(2.5),while a single-step nucleation process leaving bottom layer unchanged in tensile-strained situation.Strain analyses reveal that the former process is initiated by an expansion in Co layer at boundary,whereas the latter one is associated with an edge dislocation combined with antiphase boundary.These findings provide a chemomechanical perspective on the structure regulation of perovskite oxides and enrich insights into strain-dependent phase diagram in epitaxial oxides films.展开更多
The frequency-dependent electrical properties and strain self-sensing behaviour of ultra-high performance concrete(UHPC)as cement-based stress/strain self-sensing(CBSS)smart materials were investigated in the frequenc...The frequency-dependent electrical properties and strain self-sensing behaviour of ultra-high performance concrete(UHPC)as cement-based stress/strain self-sensing(CBSS)smart materials were investigated in the frequency range from 100 Hz to 300 kHz.By using the electrical parameters of the equivalent electric circuit model,the quantitative relations of capacitance and conductance of CBSS with the measurement frequency were derived.The capacitance and the conductance exhibit power-law type dependence on the measurement frequency.The calculated capacitance values at frequencies beyond 2 kHz and conductance values are consistent with the experimental results.The sweep-frequency test and the fixed-frequency test were performed to examine effects of the excitation frequencies on strain self-sensing properties of CBSS.The fractional change in capacitance(FCC)and resistance(FCR)of CBSS are frequency-dependent in the frequency range from 100 Hz to the f_(B),but frequency-independent in the frequency range from the f_(B)to 300 kHz.The f_(A)and the f_(B)are 1.7-4.0 kHz and 11-78 kHz depending on the fiber dosages,respectively.FCC and FCR reach their maximum at the f_(A)and 100 Hz,respectively.The responses of capacitance and resistance of CBSS to strain show good repeatability during cyclic loading.As the fiber dosage increases,capacitance-based sensitivity to strain increases initially and then decreases at the f_(A),and resistance-based sensitivity to strain of CBSS increases with increasing fiber contents.展开更多
Mechanical strain can induce noteworthy structural and electronic changes in vanadium dioxide, imparting substantial scientific importance to both the exploration of phase transitions and the development of potential ...Mechanical strain can induce noteworthy structural and electronic changes in vanadium dioxide, imparting substantial scientific importance to both the exploration of phase transitions and the development of potential technological applications. Unlike the traditional rutile(R) phase, bronze-phase vanadium dioxide [VO_(2)(B)] exhibits an in-plane anisotropic structure. When subjected to stretching along distinct crystallographic axes, VO_(2)(B) may further manifest the axial dependence in lattice–electron interactions, which is beneficial for gaining insights into the anisotropy of electronic transport.Here, we report an anisotropic room-temperature metal–insulator transition in single-crystal VO_(2)(B) by applying in-situ uniaxial tensile strain. This material exhibits significantly different electromechanical responses along two anisotropic axes.We reveal that such an anisotropic electromechanical response mainly arises from the preferential arrangement of a straininduced unidirectional stripe state in the conductive channel. This insulating stripe state could be attributed to the in-plane dimerization within the distorted zigzag chains of vanadium atoms, evidenced by strain-modulated Raman spectra. Our work may open up a promising avenue for exploiting the anisotropy of metal–insulator transition in vanadium dioxide for potential technological applications.展开更多
[Objectives]To explore the effects of Shentong Zhuyu decoction combined with massage therapy in the treatment of exertional chronic lumbar muscle strain.[Methods]Sixty-four cases of exertional chronic lumbar muscle st...[Objectives]To explore the effects of Shentong Zhuyu decoction combined with massage therapy in the treatment of exertional chronic lumbar muscle strain.[Methods]Sixty-four cases of exertional chronic lumbar muscle strain were randomly divided into two groups(32 cases each group).The patients in the control group only took celecoxib capsules,and those in the treatment group additionally took Shentong Zhuyu decoction combined with massage therapy.TCM syndrome score,lumbar function,hemorrheology index and clinical effect were compared between the two groups before and after treatment.[Results]After treatment,the TCM syndrome scores of lumbar distension/dull pain,tingling-like lumbago,adverse lateral turn,body weight loss,dark purple tongue,slow or astringent pulse,and Oswestry disability index(ODI)score in the treatment group were lower than those in the control group,and the levels of plasma viscosity,red blood cell aggregation index,platelet aggregation rate(PAG)and fibrinogen(Fib)were lower than those in the control group,showing statistical significance(P<0.05).The overall clinical effect distribution of the treatment group was better than that of the control group,and the difference was statistically significant(P<0.05).[Conclusions]Shentong Zhuyu decoction combined with massage therapy can effectively relieve the symptoms of patients with lumbago and improve the lumbar mobility function and hemorrheology,with obvious therapeutic effects in the treatment of exertional chronic lumbar muscle strain.展开更多
Materials with kagome lattices have attracted significant research attention due to their nontrivial features in energy bands.We theoretically investigate the evolution of electronic band structures of kagome lattices...Materials with kagome lattices have attracted significant research attention due to their nontrivial features in energy bands.We theoretically investigate the evolution of electronic band structures of kagome lattices in response to uniaxial strain using both a tight-binding model and an antidot model based on a periodic muffin-tin potential.It is found that the Dirac points move with applied strain.Furthermore,the flat band of unstrained kagome lattices is found to develop into a highly anisotropic shape under a stretching strain along y direction,forming a partially flat band with a region dispersionless along ky direction while dispersive along kx direction.Our results shed light on the possibility of engineering the electronic band structures of kagome materials by mechanical strain.展开更多
The Earth’s surface kinematics and deformation are fundamental to understanding crustal evolution.An effective research approach is to estimate regional motion field and deformation fields based on modern geodetic ne...The Earth’s surface kinematics and deformation are fundamental to understanding crustal evolution.An effective research approach is to estimate regional motion field and deformation fields based on modern geodetic networks.If the discrete observed velocity field is obtained,the velocity related fields,such as dilatation rate and maximum shear strain rate,can be estimated by applying varied mathematical approaches.This study applied Akaike's Bayesian Information Criterion(ABIC)method to calculate strain rate fields constrained by GPS observations in the southeast Tibetan Plateau.Comparison with results derived from other three methods revealed that our ABIC-derived strain rate fields were more precise.The maximum shear strain rate highlighted the Xianshuihe–Xiaojiang fault system as the main boundary for the outward migration of material in southeastern Tibet,indicating rotation of eastern Tibet material around the eastern Himalaya rather than whole extrusion along a fixed channel.Additionally,distinct dilatation rate patterns in the northeast and southwest regions of the fault system were observed.The northeast region,represented by the Longmenshan area,exhibited negative dilatational anomalies;while the southwest region,represented by the Jinsha River area north of 29°N,displayed positive dilatational anomalies.This indicates compression in the former and extension in the latter.Combined with deep geophysical observations,we believe that the upper and lower crusts of the Jinsha River area north of 29°N are in an entire expanding state,probably caused by the escape-drag effect of material.The presence of a large,low-viscosity region south of 29°N may not enable the entire escape of the crust,but instead result in a differential escape of the lower crust faster than the upper crust.展开更多
In this study,pre-strain ranging from 0 to 0.12 was applied through uniaxial tension on high-strength low-alloy(HSLA)specimens with four kinds of grain size.Effect of pre-strain and grain size on me-chanical property ...In this study,pre-strain ranging from 0 to 0.12 was applied through uniaxial tension on high-strength low-alloy(HSLA)specimens with four kinds of grain size.Effect of pre-strain and grain size on me-chanical property was investigated through tensile tests.Microstructures of the pre-strained and tensile tested samples were analyzed,respectively.The 30.8°v-bending and following flattening,as well as Erichson cupping tests,were performed on the pre-strained samples.Results show the elongation ratio of grain and dislocation density increases with pre-strain.Yielding platform is removed when pre-strain is larger than 0.06 while yielding plateau period decreases with pre-strain less than 0.06 due to reduction of pinning effect.The 30.8°v-bending and the following flattening tests are successfully accomplished on all the pre-strained samples with different grain size.Decrease in grain size,along with increase in pre-strain,causes increase in strength and decrease in elongation rate as well as cupping value.Pre-strain causes very slight effect on bending ability,much less than that on mechanical property and cupping test value.Reciprocal impact of the pre-strain and grain size on HSLA steel deformability is inconspicuous.展开更多
The first-principles calculations are performed to examine structural,mechanical,and electronic properties at large strain for a monolayer C_(4)N_(4),which has been predicted as an anchoring promising material to atte...The first-principles calculations are performed to examine structural,mechanical,and electronic properties at large strain for a monolayer C_(4)N_(4),which has been predicted as an anchoring promising material to attenuate shuttle effect in Li–S batteries stemming from its large absorption energy and low diffusion energy barrier.Our results show that the ideal strengths of C_(4)N_(4)under tension and pure shear deformation conditions reach 13.9 GPa and 12.5 GPa when the strains are 0.07 and 0.28,respectively.The folded five-membered rings and diverse bonding modes between carbon and nitrogen atoms enhance the ability to resist plastic deformation of C_(4)N_(4).The orderly bond-rearranging behaviors under the weak tensile loading path along the[100]direction cause the impressive semiconductor–metal transition and inverse semiconductor–metal transition.The present results enrich the knowledge of the structure and electronic properties of C_(4)N_(4)under deformations and shed light on exploring other two-dimensional materials under diverse loading conditions.展开更多
Here we introduce bismuth-based catalysts for the efficient electrochemical reduction of CO_(2)to formic acid(HCOOH),which are composed of petal-shaped Bi_(2)O_(2)CO_(3)(BOC)that spontaneously formed from Bi thin film...Here we introduce bismuth-based catalysts for the efficient electrochemical reduction of CO_(2)to formic acid(HCOOH),which are composed of petal-shaped Bi_(2)O_(2)CO_(3)(BOC)that spontaneously formed from Bi thin film in aqueous carbonate solution at room temperature.During the electrochemical reduction process,the BOC petals transform to reduced BOC(R-BOC)consisting of individual BOC and Bi domains.Lattice mismatch between both domains induces biaxial strain at the interfaces.Density functional theory calculations suggest that the tensile strain on the Bi domain stabilizes the*OCHO intermediate,reducing the thermodynamic barrier toward CO_(2)conversion to HCOOH.Together with the thermodynamic benefit and the unique nanoporous petal-shaped morphology,R-BOC petals have a superior Faradaic efficiency of 95.9%at-0.8 V_(RHE)for the electrochemical conversion of CO_(2)to HCOOH.This work demonstrates that the spontaneously formed binary phases with desirable lattice strain can increase the activity of bismuth catalysts to the CO_(2)reduction reaction;such a strategy can be applicable in design of various electrocatalysts.展开更多
This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy ...This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy inequality and the representation theorem for thermoviscoelastic solids (TVES) with rheology. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics and are based on contravariant deviatoric second Piola-Kirchhoff stress tensor and its work conjugate covariant Green’s strain tensor and their material derivatives of up to order m and n respectively. All published works on nonlinear dynamics of TVES with rheology are mostly based on phenomenological mathematical models. In rare instances, some aspects of CBL are used but are incorrectly altered to obtain mass, stiffness and damping matrices using space-time decoupled approaches. In the work presented in this paper, we show that this is not possible using CBL of CCM for TVES with rheology. Thus, the mathematical models used currently in the published works are not the correct description of the physics of nonlinear dynamics of TVES with rheology. The mathematical model used in the present work is strictly based on the CBL of CCM and is thermodynamically and mathematically consistent and the space-time coupled finite element methodology used in this work is unconditionally stable and provides solutions with desired accuracy and is ideally suited for nonlinear dynamics of TVES with memory. The work in this paper is the first presentation of a mathematical model strictly based on CBL of CCM and the solution of the mathematical model is obtained using unconditionally stable space-time coupled computational methodology that provides control over the errors in the evolution. Both space-time coupled and space-time decoupled finite element formulations are considered for obtaining solutions of the IVPs described by the mathematical model and are presented in the paper. Factors or the physics influencing dynamic response and dynamic bifurcation for TVES with rheology are identified and are also demonstrated through model problem studies. A simple model problem consisting of a rod (1D) of TVES material with memory fixed at one end and subjected to harmonic excitation at the other end is considered to study nonlinear dynamics of TVES with rheology, frequency response as well as dynamic bifurcation phenomenon.展开更多
基金Supported by Key R&D Project of Science&Technology Department of Ningxia Hui Autonomous Region(2021BBF02013)Post-doctoral Program of Hebei Province(2019003011)Hebei Province Innovation Ability Enhancement Plan Project(225676109H).
文摘[Objectives]The paper was to screen effective biocontrol strains against Meloidogyne incognita.[Methods]The effect of six bacterial strains sourced from the research group s strain library on the activity of second instar larvae of M.incognita,as well as on egg hatching,was evaluated.[Results]The treatment of fermentation supernatant derived from the X-2 strain exhibited a pronounced lethal effect on M.incognita,with a corrected mortality rate reaching 97%within 72 h.Additionally,this treatment significantly inhibited egg hatching,achieving an inhibition rate of 94.69%at a 20-fold dilution.The strain was identified as Bacillus velezensis,belonging to the genus Bacillus,and was designated as RKN1111.[Conclusions]This study presents alternative strains and a theoretical framework for the biological control of M.incognita.
基金supported by DOD AFIRMⅢW81XWH-20-2-0029 subcontract,UT POC19-1774-13Neuraptive Therapeutics Inc.26-7724-56+1 种基金NIH R01-NS128086 grantsLone Star Paralysis gift(to GDB)。
文摘Successful polyethylene glycol fusion(PEG-fusion)of severed axons following peripheral nerve injuries for PEG-fused axons has been reported to:(1)rapidly restore electrophysiological continuity;(2)prevent distal Wallerian Degeneration and maintain their myelin sheaths;(3)promote primarily motor,voluntary behavioral recoveries as assessed by the Sciatic Functional Index;and,(4)rapidly produce correct and incorrect connections in many possible combinations that produce rapid and extensive recovery of functional peripheral nervous system/central nervous system connections and reflex(e.g.,toe twitch)or voluntary behaviors.The preceding companion paper describes sensory terminal field reo rganization following PEG-fusion repair of sciatic nerve transections or ablations;howeve r,sensory behavioral recovery has not been explicitly explored following PEG-fusion repair.In the current study,we confirmed the success of PEG-fusion surgeries according to criteria(1-3)above and more extensively investigated whether PEG-fusion enhanced mechanical nociceptive recovery following sciatic transection in male and female outbred Sprague-Dawley and inbred Lewis rats.Mechanical nociceptive responses were assessed by measuring withdrawal thresholds using von Frey filaments on the dorsal and midplantar regions of the hindpaws.Dorsal von Frey filament tests were a more reliable method than plantar von Frey filament tests to assess mechanical nociceptive sensitivity following sciatic nerve transections.Baseline withdrawal thresholds of the sciatic-mediated lateral dorsal region differed significantly across strain but not sex.Withdrawal thresholds did not change significantly from baseline in chronic Unoperated and Sham-operated rats.Following sciatic transection,all rats exhibited severe hyposensitivity to stimuli at the lateral dorsal region of the hindpaw ipsilateral to the injury.However,PEG-fused rats exhibited significantly earlier return to baseline withdrawal thresholds than Negative Control rats.Furthermore,PEG-fused rats with significantly improved Sciatic Functional Index scores at or after 4 weeks postoperatively exhibited yet-earlier von Frey filament recove ry compared with those without Sciatic Functional Index recovery,suggesting a correlation between successful PEG-fusion and both motor-dominant and sensory-dominant behavioral recoveries.This correlation was independent of the sex or strain of the rat.Furthermore,our data showed that the acceleration of von Frey filament sensory recovery to baseline was solely due to the PEG-fused sciatic nerve and not saphenous nerve collateral outgrowths.No chronic hypersensitivity developed in any rat up to 12 weeks.All these data suggest that PEG-fusion repair of transection peripheral nerve injuries co uld have important clinical benefits.
基金supported by the National Natural Science Foundation of China(21872040,22162004)the Excellent Scholars and Innovation Team of Guangxi Universities,the Innovation Project of Guangxi Graduate Education(YCBZ2022038)the High-performance Computing Platform of Guangxi University.
文摘Exploitation of oxygen evolution reaction(OER)and urea oxidation reaction(UOR)catalysts with high activity and stability at large current density is a major challenge for energy-saving H_(2) production in water electrolysis.Herein,we use the pyridinic-N doping carbon layers coupled with tensile strain of FeNi alloy activated by NiFe_(2)O_(4)(FeNi/NiFe_(2)O_(4)@NC)for efficiently increasing the performance of water and urea oxidation.Due to the tensile strain effect on FeNi/NiFe_(2)O_(4)@NC,it provides a favorable modulation on the electronic properties of the active center,thus enabling amazing OER(η_(100)=196 mV)and UOR(E_(10)=1.32 V)intrinsic activity.Besides,the carbon-coated layers can be used as armor to prevent FeNi alloy from being corroded by the electrolyte for enhancing the OER/UOR stability at large current density,showing high industrial practicability.This work thus provides a simple way to prepare high-efficiency catalyst for activating water and urea oxidation.
基金National Natural Science Foundation of China [grant no. 82060610]National Natural Science Foundation of China [grant no. 82103899]+2 种基金Guangxi Scientific and Technological Key Project[Gui Ke AB19245038]Guangxi Scientific and Technological Key Project [Guike 2022AC23005, 2022AC20031,2022JJA141110]Science and Technology Project of Nanning [20223051]。
文摘Objective The mode of human immunodeficiency virus(HIV) transmission via injection drug use(IDU)still exists, and the recent shift in IDU-related transmission of HIV infection is largely unknown. The purpose of this study was to analyze the spatiotemporal sources and dynamics of HIV-1 transmission through IDU in Guangxi.Methods We performed a molecular epidemiological investigation of infections across Guangxi from2009 to 2019. Phylogenetic and Bayesian time-geographic analyses of HIV-1 sequences were performed to confirm the characteristics of transmission between IDUs in combination with epidemiological data.Results Among the 535 subjects, CRF08_BC(57.4%), CRF01_AE(28.4%), and CRF07_BC(10.7%) were the top 3 HIV strains;72.6% of infections were linked to other provinces in the transmission network;93.6% of sequence-transmitted strains were locally endemic, with the rest coming from other provinces,predominantly Guangdong and Yunnan;92.1% of the HIV transmission among people who inject drugs tended to be transmitted between HIV-positive IDUs.Conclusion HIV recombinants were high diversity, and circulating local strains were the transmission sources among IDUs in Guangxi. However, there were still cases of IDUs linked to other provinces.Coverage of traditional prevention strategies should be expanded, and inter-provincial collaboration between Guangxi, Yunnan, and Guangdong provinces should be strengthened.
文摘Plants have always been used by people for therapeutic purposes. They are still the main source of therapeutic substances in developing countries. Crateva adansonii, a member of the Capparidaceae family, is a medicinal plant with antibacterial properties used in Benin. The aim of this study was to assess the efficacy of an aqueous extract of C. adansonii on bacterial strains isolated from chronic wounds in the Ouinhi population. To achieve this, the bacterial flora present in chronic wounds was identified using the Ikram method (2014) coupled with the API Remoel One method. The antibacterial properties of the aqueous extract of C. adansonii on the microbial strains isolated were then assessed by determining the Inhibition Diameters (ID), the Minimum Inhibitory Concentrations (MIC) and finally the Minimum Bactericidal Concentrations (MBC). A total of eighty (80) strains were isolated and identified on the basis of morphological, cultural and biochemical characteristics. The species S. Aureus species accounted for the largest proportion (67.5%). Other species such as Listeria sp, Pseudomonas proteus, S. epidermidis and Bacillus cereus, Citrobacter freundii, Steno maltophila;Axin calcoaceticus, E. coli, K. pneumonia, Lem. richardii, Salmonella paratyphi A, Salmonella sp, Shigella sp were determined in variable proportions. At a concentration of 10 mg/ml, only S. aureus was sensitive to contact with the extract. However, at 20 mg/ml, 89% of strains were sensitive and 11% very sensitive. The highly sensitive strains are Salmonella sp and E. coli. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) are 20 mg/ml and 40 mg/ml respectively. The MBC/MIC ratio of the aqueous mixture of Crateva adansonii (Capparidaceae) varied from 1.2 to 2, with a bactericidal effect on 100% of the strains tested.
基金Supported by Heilongjiang Province Natural Science Foundation(C2016019)Cooperative Innovation System of Potato Modern Agricultural Industry Technology in Heilongjiang Province(HNWJZT201801)。
文摘The occurrence of sexual reproduction accelerates the population genetic variation of Phytophthora infestans and makes it more difficult to control.The systematic analysis of the differentiation of phenotype(mating type and metalaxyl sensitivity)and genotype(mtDNA haplotype and SSR genotype)of 65 single oospore strains of P.infestans was carried out in this article.Five test strains were isolated from Heilongjiang Province and Mongolia Autonomous Region.The experiment results showed that the isolation ratio of metalaxyl resistance(MR:HR)of single oospore strains produced through the cross of medium resistance and high resistant parents was 18:13;the isolation ratio of the metalaxyl resistance(S:MR:HR)of single oospore strains produced through the cross of sensitive and high resistant parents was 4:12:7.The progenies of single oospore strains produced through self-fertility parents with medium resistance were all of the medium resistance.The mating types A1:A2 was greater than 1:1 in single oospore strains of the progenies,which did not conform to the Mendel's law of inheritance.All single oospore strains of the progenies inherited mitochondrial DNA fragments from only one parent.Sexual recombination of single oospore strains was verified by using two pairs of SSR primers(Pi4B and Pi4G).At the locus of Pi4B and Pi4G in the cross of KS-37 and KS-25,the separation frequencies of allele were 19:12 and 14:17,respectively.They produced two new genotype strains.This study could provide a basis for formulating disease control strategies.
基金financially supported by the National Natural Science Foundation of China(52071072)the Fundamental Research Funds for the Central Universities(2023GFZD03)+4 种基金the Natural Science Foundation-Steel,the Iron Foundation of Hebei Province(E2022501030)the Key Research and Development Plan of Qinhuangdao City(202302B013)the Liaoning Applied Basic Research Program(2023JH2/101300011)the Basic scientific research project of Liaoning Province Department of Education(LJKZZ20220024)the Shenyang Science and Technology Project(23-407-3-13)。
文摘The oxygen evolution reaction(OER)is a crucial step in metal-air batteries and water splitting technologies,playing a significant role in the efficiency and achievable heights of these two technologies.However,the OER is a four-step,four-electron reaction,and its slow kinetics result in high overpotentials,posing a challenge.To address this issue,numerous strategies involving modified catalysts have been proposed and proven to be highly efficient.In these strategies,the introduction of strain has been widely reported because it is generally believed to effectively regulate the electronic structure of metal sites and alter the adsorption energy of catalyst surfaces with reaction intermediates.However,strain has many other effects that are not well known,making it an important yet unexplored area.Based on this,this review provides a detailed introduction to the various roles of strain in OER.To better explain these roles,the review also presents the definition of strain and elucidates the potential mechanisms of strain in OER based on the d-band center theory and adsorption volcano plot.Additionally,the review showcases various ways of introducing strain in OER through examples reported in the latest literature,aiming to provide a comprehensive perspective for the development of strain engineering.Finally,the review analyzes the appropriate proportion of strain introduction,compares compressive and tensile strain,and examines the impact of strain on stability.And the review offers prospects for future research directions in this emerging field.
文摘In automobile wheel application, a test rig is vital and used to simulate conditions of the wheel in service in order to affirm the safety and reliability of the wheel. The present work designed a test rig for measuring axial strains in automobile wheel. The wheel used was a five-arm wheel (6JX14H2;ET 42) and Tyre (175 × 65 R 14). Experimental (EXP) test was carried out, with a radial load of 4750 N and inflation pressure of 0.3 MPa, to measure the axil strains which were converted to maximum principal strain values and, compared with data from Finite Element Analysis (FEA) using Creo-Element/Pro 5.0 at wheel’s contact angles of 90 degree (FEA 90 deg), 40 degree (FEA 40 deg) and 30.25 degree (FEA 30.25 deg), respectively. Results show that at the wheel’s point of contact with the ground, maximum principal strain values were highest at the inboard bead seat with a value of about 5.69 × 10<sup>-4</sup> mm/mm, followed by the values at the well of about 5.66 × 10<sup>-4</sup> mm/mm. The value at the outboard bead seat was least at about 2.22 × 10<sup>-4</sup> mm/mm, which was due to the presence of spikes at this location that tends to resist imposed radial loads. However, the highest mean maximum principal strain values at the locations of inboard, well and outboard, were about 2.11 × 10<sup>-4</sup> mm/mm, 3.78 × 10<sup>-4</sup> mm/mm and .99 × 10<sup>-4</sup> mm/mm, respectively. With the highest single value of about 5.69 × 10<sup>-4</sup> mm/mm, the inboard bead seat was the most strained location of the wheel. Overall results showed that all values of maximum principal strains were below the threshold value of about 1 × 10<sup>-2</sup> mm/mm. The values obtained for EXP and FEA could be said to be in close agreement when compared with the threshold value. With this in mind, the rig is recommended for use in related experimental procedures.
基金supported by the Key Research and Development Plan of Shaanxi Province (2023-GHZD-12)the Opening Fund of State Key Laboratory for Strength and Vibration of Mechanical Structures (SVL2021-KF-12)+1 种基金Fundamental Research Funds for the Central Universities (G2020KY05112)the 111 Project (BP0719007)
文摘Nanorubber/epoxy composites containing 0,2,6 and 10 wt%nanorubber are subjected to uniaxial compression over a wide range of strain rate from 8×10^(-4) s^(-1) to~2×10^(4) s^(-1).Unexpectedly,their strain rate sensitivity and strain hardening index increase with increasing nanorubber content.Potential mechanisms are proposed based on numerical simulations using a unit cell model.An increase in the strain rate sensitivity with increasing nanorubber content results from the fact that the nanorubber becomes less incompressible at high strain,generating a higher hydro-static pressure.Adiabatic shear localization starts to occur in the epoxy under a strain rate of 22,000 s^(-1) when the strain exceeds 0.35.The presence of nanorubber in the epoxy reduces adiabatic shear localization by preventing it from propagating.
文摘Introduction: The improvement of survival in patients with cancer and the expansion of therapeutic options have led to the emergence of a new profile of cardiotoxicity, specifically associated with antimitotic agents. Our study aimed to assess the incidence of chemotherapy-induced myocardial toxicity in patients with cancer. Patients and Methods: We conducted a looking-forward longitudinal cohort study including all patients admitted to the Cardiology departments of Aristide le Dantec Hospital and Dalal Jamm National Hospital Centre for apre-chemotherapy check-up. The included patients did not undergo any pre-existing cardiopathy. Results: Over a period of two years ranging from January 2019 to December 2021, a total of 37 patients were included in the study. Notably, there was a female predominance (92%) with an average age of 49.7 years ± 13.69. Breast cancer accounted for 70% of the neoplasms. Laboratory findings revealed moderate anemia in 19 patients (51%). At inclusion, the left ventricle (LV) was of normal size (LV diastole at 44.46 ± 4.97 mm). The systolic function of the left ventricle was normal in all patients, with an average ejection fraction (EF) of 63.1% ± 5.80 and a mean global longitudinal strain (GLS) of −20.4% ± 2.58. The most commonly used agents were anthracyclines. During follow-up, 3 patients (8.1%) developed clinical symptoms of left heart failure, and LV dysfunction on echocardiography was observed in 5 (13.5%) patients, with a significant decrease in EF Conclusion: The incidence of cardiac toxicity is not negligible, hence the importance of early screening. Strain imaging is an essential tool that should be performed as part of the assessment before chemotherapy and re-evaluated during treatment.
基金supported by the National Natural Science Foundation of China(Grant Nos.52322212,52072400,52025025,and 52250402)。
文摘Phase transitions involving oxygen ion extraction within the framework of the crystallographic relevance have been widely exploited for sake of superconductivity,ferromagnetism,and ion conductivity in perovskiterelated oxides.However,atomic-scale pathways of phase transitions and ion extraction threshold are inadequately understood.Here we investigate the atomic structure evolution of LaCoO_(3) films upon oxygen extraction and subsequent Co migration,focusing on the key role of epitaxial strain.The brownmillerite to Ruddlesden-Popper phase transitions are discovered to stabilize at distinct crystal orientations in compressive-and tensile-strained cobaltites,which could be attributed to in-plane and out-of-plane Ruddlesden-Popper stacking faults,respectively.A two-stage process from exterior to interior phase transition is evidenced in compressive-strained LaCoO_(2.5),while a single-step nucleation process leaving bottom layer unchanged in tensile-strained situation.Strain analyses reveal that the former process is initiated by an expansion in Co layer at boundary,whereas the latter one is associated with an edge dislocation combined with antiphase boundary.These findings provide a chemomechanical perspective on the structure regulation of perovskite oxides and enrich insights into strain-dependent phase diagram in epitaxial oxides films.
文摘The frequency-dependent electrical properties and strain self-sensing behaviour of ultra-high performance concrete(UHPC)as cement-based stress/strain self-sensing(CBSS)smart materials were investigated in the frequency range from 100 Hz to 300 kHz.By using the electrical parameters of the equivalent electric circuit model,the quantitative relations of capacitance and conductance of CBSS with the measurement frequency were derived.The capacitance and the conductance exhibit power-law type dependence on the measurement frequency.The calculated capacitance values at frequencies beyond 2 kHz and conductance values are consistent with the experimental results.The sweep-frequency test and the fixed-frequency test were performed to examine effects of the excitation frequencies on strain self-sensing properties of CBSS.The fractional change in capacitance(FCC)and resistance(FCR)of CBSS are frequency-dependent in the frequency range from 100 Hz to the f_(B),but frequency-independent in the frequency range from the f_(B)to 300 kHz.The f_(A)and the f_(B)are 1.7-4.0 kHz and 11-78 kHz depending on the fiber dosages,respectively.FCC and FCR reach their maximum at the f_(A)and 100 Hz,respectively.The responses of capacitance and resistance of CBSS to strain show good repeatability during cyclic loading.As the fiber dosage increases,capacitance-based sensitivity to strain increases initially and then decreases at the f_(A),and resistance-based sensitivity to strain of CBSS increases with increasing fiber contents.
基金Project supported by the National Key R&D Program of China (Grant No. 2023YFF1203600)the National Natural Science Foundation of China (Grant Nos. 62122036, 62034004, 12322407, 61921005, and 12074176)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB44000000)supported by the program for Outstanding Ph D Candidates of Nanjing University。
文摘Mechanical strain can induce noteworthy structural and electronic changes in vanadium dioxide, imparting substantial scientific importance to both the exploration of phase transitions and the development of potential technological applications. Unlike the traditional rutile(R) phase, bronze-phase vanadium dioxide [VO_(2)(B)] exhibits an in-plane anisotropic structure. When subjected to stretching along distinct crystallographic axes, VO_(2)(B) may further manifest the axial dependence in lattice–electron interactions, which is beneficial for gaining insights into the anisotropy of electronic transport.Here, we report an anisotropic room-temperature metal–insulator transition in single-crystal VO_(2)(B) by applying in-situ uniaxial tensile strain. This material exhibits significantly different electromechanical responses along two anisotropic axes.We reveal that such an anisotropic electromechanical response mainly arises from the preferential arrangement of a straininduced unidirectional stripe state in the conductive channel. This insulating stripe state could be attributed to the in-plane dimerization within the distorted zigzag chains of vanadium atoms, evidenced by strain-modulated Raman spectra. Our work may open up a promising avenue for exploiting the anisotropy of metal–insulator transition in vanadium dioxide for potential technological applications.
基金Supported by General Program of National Natural Science Foundation of China(31470075).
文摘[Objectives]To explore the effects of Shentong Zhuyu decoction combined with massage therapy in the treatment of exertional chronic lumbar muscle strain.[Methods]Sixty-four cases of exertional chronic lumbar muscle strain were randomly divided into two groups(32 cases each group).The patients in the control group only took celecoxib capsules,and those in the treatment group additionally took Shentong Zhuyu decoction combined with massage therapy.TCM syndrome score,lumbar function,hemorrheology index and clinical effect were compared between the two groups before and after treatment.[Results]After treatment,the TCM syndrome scores of lumbar distension/dull pain,tingling-like lumbago,adverse lateral turn,body weight loss,dark purple tongue,slow or astringent pulse,and Oswestry disability index(ODI)score in the treatment group were lower than those in the control group,and the levels of plasma viscosity,red blood cell aggregation index,platelet aggregation rate(PAG)and fibrinogen(Fib)were lower than those in the control group,showing statistical significance(P<0.05).The overall clinical effect distribution of the treatment group was better than that of the control group,and the difference was statistically significant(P<0.05).[Conclusions]Shentong Zhuyu decoction combined with massage therapy can effectively relieve the symptoms of patients with lumbago and improve the lumbar mobility function and hemorrheology,with obvious therapeutic effects in the treatment of exertional chronic lumbar muscle strain.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11904261 and 11904259).
文摘Materials with kagome lattices have attracted significant research attention due to their nontrivial features in energy bands.We theoretically investigate the evolution of electronic band structures of kagome lattices in response to uniaxial strain using both a tight-binding model and an antidot model based on a periodic muffin-tin potential.It is found that the Dirac points move with applied strain.Furthermore,the flat band of unstrained kagome lattices is found to develop into a highly anisotropic shape under a stretching strain along y direction,forming a partially flat band with a region dispersionless along ky direction while dispersive along kx direction.Our results shed light on the possibility of engineering the electronic band structures of kagome materials by mechanical strain.
基金supported by grants from the Ministry of Science and Technology(Grant Nos.2021FY100101,2019QZKK0901)the National Natural Science Foundation of China(Grant Nos.41941016,42230312,42020104007)China Geological Survey(Grant No.DD20221630).
文摘The Earth’s surface kinematics and deformation are fundamental to understanding crustal evolution.An effective research approach is to estimate regional motion field and deformation fields based on modern geodetic networks.If the discrete observed velocity field is obtained,the velocity related fields,such as dilatation rate and maximum shear strain rate,can be estimated by applying varied mathematical approaches.This study applied Akaike's Bayesian Information Criterion(ABIC)method to calculate strain rate fields constrained by GPS observations in the southeast Tibetan Plateau.Comparison with results derived from other three methods revealed that our ABIC-derived strain rate fields were more precise.The maximum shear strain rate highlighted the Xianshuihe–Xiaojiang fault system as the main boundary for the outward migration of material in southeastern Tibet,indicating rotation of eastern Tibet material around the eastern Himalaya rather than whole extrusion along a fixed channel.Additionally,distinct dilatation rate patterns in the northeast and southwest regions of the fault system were observed.The northeast region,represented by the Longmenshan area,exhibited negative dilatational anomalies;while the southwest region,represented by the Jinsha River area north of 29°N,displayed positive dilatational anomalies.This indicates compression in the former and extension in the latter.Combined with deep geophysical observations,we believe that the upper and lower crusts of the Jinsha River area north of 29°N are in an entire expanding state,probably caused by the escape-drag effect of material.The presence of a large,low-viscosity region south of 29°N may not enable the entire escape of the crust,but instead result in a differential escape of the lower crust faster than the upper crust.
基金Funded by Natural Science Foundation of Guangxi Zhuang Autonomous Region(No.2020JJA160034)the Basic Ability Improvement of Middle and Young Teachers in Guangxi Universities Foundation(No.2020KY21018)。
文摘In this study,pre-strain ranging from 0 to 0.12 was applied through uniaxial tension on high-strength low-alloy(HSLA)specimens with four kinds of grain size.Effect of pre-strain and grain size on me-chanical property was investigated through tensile tests.Microstructures of the pre-strained and tensile tested samples were analyzed,respectively.The 30.8°v-bending and following flattening,as well as Erichson cupping tests,were performed on the pre-strained samples.Results show the elongation ratio of grain and dislocation density increases with pre-strain.Yielding platform is removed when pre-strain is larger than 0.06 while yielding plateau period decreases with pre-strain less than 0.06 due to reduction of pinning effect.The 30.8°v-bending and the following flattening tests are successfully accomplished on all the pre-strained samples with different grain size.Decrease in grain size,along with increase in pre-strain,causes increase in strength and decrease in elongation rate as well as cupping value.Pre-strain causes very slight effect on bending ability,much less than that on mechanical property and cupping test value.Reciprocal impact of the pre-strain and grain size on HSLA steel deformability is inconspicuous.
基金Project support by the National Natural Science Foundation of China(Grant Nos.11704044 and 12074140)。
文摘The first-principles calculations are performed to examine structural,mechanical,and electronic properties at large strain for a monolayer C_(4)N_(4),which has been predicted as an anchoring promising material to attenuate shuttle effect in Li–S batteries stemming from its large absorption energy and low diffusion energy barrier.Our results show that the ideal strengths of C_(4)N_(4)under tension and pure shear deformation conditions reach 13.9 GPa and 12.5 GPa when the strains are 0.07 and 0.28,respectively.The folded five-membered rings and diverse bonding modes between carbon and nitrogen atoms enhance the ability to resist plastic deformation of C_(4)N_(4).The orderly bond-rearranging behaviors under the weak tensile loading path along the[100]direction cause the impressive semiconductor–metal transition and inverse semiconductor–metal transition.The present results enrich the knowledge of the structure and electronic properties of C_(4)N_(4)under deformations and shed light on exploring other two-dimensional materials under diverse loading conditions.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)and the Ministry of Trade,Industry&Energy(MOTIE)of the Republic of Korea(20212010100040)in part by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2019R1A2C1091158)in part by Brain Korea 21 FOUR project for Education and Research Center for Future Materials(F21YY7105002)
文摘Here we introduce bismuth-based catalysts for the efficient electrochemical reduction of CO_(2)to formic acid(HCOOH),which are composed of petal-shaped Bi_(2)O_(2)CO_(3)(BOC)that spontaneously formed from Bi thin film in aqueous carbonate solution at room temperature.During the electrochemical reduction process,the BOC petals transform to reduced BOC(R-BOC)consisting of individual BOC and Bi domains.Lattice mismatch between both domains induces biaxial strain at the interfaces.Density functional theory calculations suggest that the tensile strain on the Bi domain stabilizes the*OCHO intermediate,reducing the thermodynamic barrier toward CO_(2)conversion to HCOOH.Together with the thermodynamic benefit and the unique nanoporous petal-shaped morphology,R-BOC petals have a superior Faradaic efficiency of 95.9%at-0.8 V_(RHE)for the electrochemical conversion of CO_(2)to HCOOH.This work demonstrates that the spontaneously formed binary phases with desirable lattice strain can increase the activity of bismuth catalysts to the CO_(2)reduction reaction;such a strategy can be applicable in design of various electrocatalysts.
文摘This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy inequality and the representation theorem for thermoviscoelastic solids (TVES) with rheology. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics and are based on contravariant deviatoric second Piola-Kirchhoff stress tensor and its work conjugate covariant Green’s strain tensor and their material derivatives of up to order m and n respectively. All published works on nonlinear dynamics of TVES with rheology are mostly based on phenomenological mathematical models. In rare instances, some aspects of CBL are used but are incorrectly altered to obtain mass, stiffness and damping matrices using space-time decoupled approaches. In the work presented in this paper, we show that this is not possible using CBL of CCM for TVES with rheology. Thus, the mathematical models used currently in the published works are not the correct description of the physics of nonlinear dynamics of TVES with rheology. The mathematical model used in the present work is strictly based on the CBL of CCM and is thermodynamically and mathematically consistent and the space-time coupled finite element methodology used in this work is unconditionally stable and provides solutions with desired accuracy and is ideally suited for nonlinear dynamics of TVES with memory. The work in this paper is the first presentation of a mathematical model strictly based on CBL of CCM and the solution of the mathematical model is obtained using unconditionally stable space-time coupled computational methodology that provides control over the errors in the evolution. Both space-time coupled and space-time decoupled finite element formulations are considered for obtaining solutions of the IVPs described by the mathematical model and are presented in the paper. Factors or the physics influencing dynamic response and dynamic bifurcation for TVES with rheology are identified and are also demonstrated through model problem studies. A simple model problem consisting of a rod (1D) of TVES material with memory fixed at one end and subjected to harmonic excitation at the other end is considered to study nonlinear dynamics of TVES with rheology, frequency response as well as dynamic bifurcation phenomenon.