In recent years,rapid urban development has led to capsule hotels,sleep pods,and other tiny sleeping spaces that adapt to people’s fast-paced lives,achieving maximum functionality with a very small footprint.However,...In recent years,rapid urban development has led to capsule hotels,sleep pods,and other tiny sleeping spaces that adapt to people’s fast-paced lives,achieving maximum functionality with a very small footprint.However,due to the small space,human metabolic pollutant(such as CO_(2))is more likely to accumulate,and the air is not easily circulated.In this paper,a full-size experimental platform is set up with three types of ventilation modes to explore the exclusion efficiency of metabolic pollutants and the overall distribution of age of air under these ventilation modes.The conclusions showed that the mean values of metabolic pollutant exclusion rates for the different ventilation modalities varied very little across the spatial dimensions of the confined space but varied considerably in the area around the head.The double-side attached ventilation method was the most effective in removing human metabolic pollutants,especially in the head region(CN≥0.92),while the single-wall attached ventilation method had the best air exchange efficiency(η≥0.85).This suggests an inconsistent distribution of CO_(2) and age of air,which is contrary to general common sense.The conclusions of this paper can guide the design of ventilation for tiny sleeping spaces.展开更多
基金This study was jointly funded by Shaanxi Provincial Overseas Scholars Scientific and Technological Activities Selection Project(2022-005)Shaanxi Provincial Key R&D Program International Science and Technology Cooperation Program Project(2023-GHZD-28),and The Youth Innovation Team of Shaanxi Universities.
文摘In recent years,rapid urban development has led to capsule hotels,sleep pods,and other tiny sleeping spaces that adapt to people’s fast-paced lives,achieving maximum functionality with a very small footprint.However,due to the small space,human metabolic pollutant(such as CO_(2))is more likely to accumulate,and the air is not easily circulated.In this paper,a full-size experimental platform is set up with three types of ventilation modes to explore the exclusion efficiency of metabolic pollutants and the overall distribution of age of air under these ventilation modes.The conclusions showed that the mean values of metabolic pollutant exclusion rates for the different ventilation modalities varied very little across the spatial dimensions of the confined space but varied considerably in the area around the head.The double-side attached ventilation method was the most effective in removing human metabolic pollutants,especially in the head region(CN≥0.92),while the single-wall attached ventilation method had the best air exchange efficiency(η≥0.85).This suggests an inconsistent distribution of CO_(2) and age of air,which is contrary to general common sense.The conclusions of this paper can guide the design of ventilation for tiny sleeping spaces.