To investigate the attack and defense strategies in complex net works,the authors propose a two-player zero-sum static game model with complete information which considers attack and defense strategies simultaneously....To investigate the attack and defense strategies in complex net works,the authors propose a two-player zero-sum static game model with complete information which considers attack and defense strategies simultaneously.The authors assume that both the attacker and defender have two typical strategies:Targeted strategy and random strategy.The authors explore the Nash equilibriums of the attacker-defender game and demonstrate that when the attacker's attack resources are not so significantly abundant as the defender's resources,there exists a pure-strategy Nash equilibrium in both model net works and real-world net works,in which the defender protects the hub t arge ts with large degrees preferentially,while the attacker prefers selecting the targets randomly.When the attack resources are much higher than defense resources,both the attacker and the defender adopt the targeted strategy in equilibriums.This paper provides a new theoretical framework for the study of attack and defense st rat egies in complex net works.展开更多
It is universally acknowledged by network security experts that proactive peer-to-peer (P2P) worms may soon en-gender serious threats to the Internet infrastructures. These latent threats stimulate activities of model...It is universally acknowledged by network security experts that proactive peer-to-peer (P2P) worms may soon en-gender serious threats to the Internet infrastructures. These latent threats stimulate activities of modeling and analysis of the proactive P2P worm propagation. Based on the classical two-factor model,in this paper,we propose a novel proactive worm propagation model in unstructured P2P networks (called the four-factor model) by considering four factors:(1) network topology,(2) countermeasures taken by Internet service providers (ISPs) and users,(3) configuration diversity of nodes in the P2P network,and (4) attack and defense strategies. Simulations and experiments show that proactive P2P worms can be slowed down by two ways:improvement of the configuration diversity of the P2P network and using powerful rules to reinforce the most connected nodes from being compromised. The four-factor model provides a better description and prediction of the proactive P2P worm propagation.展开更多
基金supported by the National Natural Science Foundation of China under Grant Nos.71871217 and 71371185the Natural Science Foundation of Hunan Province under Grant No.2019JJ20019
文摘To investigate the attack and defense strategies in complex net works,the authors propose a two-player zero-sum static game model with complete information which considers attack and defense strategies simultaneously.The authors assume that both the attacker and defender have two typical strategies:Targeted strategy and random strategy.The authors explore the Nash equilibriums of the attacker-defender game and demonstrate that when the attacker's attack resources are not so significantly abundant as the defender's resources,there exists a pure-strategy Nash equilibrium in both model net works and real-world net works,in which the defender protects the hub t arge ts with large degrees preferentially,while the attacker prefers selecting the targets randomly.When the attack resources are much higher than defense resources,both the attacker and the defender adopt the targeted strategy in equilibriums.This paper provides a new theoretical framework for the study of attack and defense st rat egies in complex net works.
基金Project (No. 09511501600) partially supported by the Science and Technology Commission of Shanghai Municipality, China
文摘It is universally acknowledged by network security experts that proactive peer-to-peer (P2P) worms may soon en-gender serious threats to the Internet infrastructures. These latent threats stimulate activities of modeling and analysis of the proactive P2P worm propagation. Based on the classical two-factor model,in this paper,we propose a novel proactive worm propagation model in unstructured P2P networks (called the four-factor model) by considering four factors:(1) network topology,(2) countermeasures taken by Internet service providers (ISPs) and users,(3) configuration diversity of nodes in the P2P network,and (4) attack and defense strategies. Simulations and experiments show that proactive P2P worms can be slowed down by two ways:improvement of the configuration diversity of the P2P network and using powerful rules to reinforce the most connected nodes from being compromised. The four-factor model provides a better description and prediction of the proactive P2P worm propagation.