In the era of the Internet of Things(IoT),the proliferation of connected devices has raised security concerns,increasing the risk of intrusions into diverse systems.Despite the convenience and efficiency offered by Io...In the era of the Internet of Things(IoT),the proliferation of connected devices has raised security concerns,increasing the risk of intrusions into diverse systems.Despite the convenience and efficiency offered by IoT technology,the growing number of IoT devices escalates the likelihood of attacks,emphasizing the need for robust security tools to automatically detect and explain threats.This paper introduces a deep learning methodology for detecting and classifying distributed denial of service(DDoS)attacks,addressing a significant security concern within IoT environments.An effective procedure of deep transfer learning is applied to utilize deep learning backbones,which is then evaluated on two benchmarking datasets of DDoS attacks in terms of accuracy and time complexity.By leveraging several deep architectures,the study conducts thorough binary and multiclass experiments,each varying in the complexity of classifying attack types and demonstrating real-world scenarios.Additionally,this study employs an explainable artificial intelligence(XAI)AI technique to elucidate the contribution of extracted features in the process of attack detection.The experimental results demonstrate the effectiveness of the proposed method,achieving a recall of 99.39%by the XAI bidirectional long short-term memory(XAI-BiLSTM)model.展开更多
Continuous-variable quantum key distribution with a local local oscillator(LLO CVQKD)has been extensively researched due to its simplicity and security.For practical security of an LLO CVQKD system,there are two main ...Continuous-variable quantum key distribution with a local local oscillator(LLO CVQKD)has been extensively researched due to its simplicity and security.For practical security of an LLO CVQKD system,there are two main attack modes referred to as reference pulse attack and polarization attack presently.However,there is currently no general defense strategy against such attacks,and the security of the system needs further investigation.Here,we employ a deep learning framework called generative adversarial networks(GANs)to detect both attacks.We first analyze the data in different cases,derive a feature vector as input to a GAN model,and then show the training and testing process of the GAN model for attack classification.The proposed model has two parts,a discriminator and a generator,both of which employ a convolutional neural network(CNN)to improve accuracy.Simulation results show that the proposed scheme can detect and classify attacks without reducing the secret key rate and the maximum transmission distance.It only establishes a detection model by monitoring features of the pulse without adding additional devices.展开更多
文摘In the era of the Internet of Things(IoT),the proliferation of connected devices has raised security concerns,increasing the risk of intrusions into diverse systems.Despite the convenience and efficiency offered by IoT technology,the growing number of IoT devices escalates the likelihood of attacks,emphasizing the need for robust security tools to automatically detect and explain threats.This paper introduces a deep learning methodology for detecting and classifying distributed denial of service(DDoS)attacks,addressing a significant security concern within IoT environments.An effective procedure of deep transfer learning is applied to utilize deep learning backbones,which is then evaluated on two benchmarking datasets of DDoS attacks in terms of accuracy and time complexity.By leveraging several deep architectures,the study conducts thorough binary and multiclass experiments,each varying in the complexity of classifying attack types and demonstrating real-world scenarios.Additionally,this study employs an explainable artificial intelligence(XAI)AI technique to elucidate the contribution of extracted features in the process of attack detection.The experimental results demonstrate the effectiveness of the proposed method,achieving a recall of 99.39%by the XAI bidirectional long short-term memory(XAI-BiLSTM)model.
基金Project supported by the National Natural Science Foundation of China(Grant No.62001383)。
文摘Continuous-variable quantum key distribution with a local local oscillator(LLO CVQKD)has been extensively researched due to its simplicity and security.For practical security of an LLO CVQKD system,there are two main attack modes referred to as reference pulse attack and polarization attack presently.However,there is currently no general defense strategy against such attacks,and the security of the system needs further investigation.Here,we employ a deep learning framework called generative adversarial networks(GANs)to detect both attacks.We first analyze the data in different cases,derive a feature vector as input to a GAN model,and then show the training and testing process of the GAN model for attack classification.The proposed model has two parts,a discriminator and a generator,both of which employ a convolutional neural network(CNN)to improve accuracy.Simulation results show that the proposed scheme can detect and classify attacks without reducing the secret key rate and the maximum transmission distance.It only establishes a detection model by monitoring features of the pulse without adding additional devices.