Existing simulations of terrorist attacks do not consider individual variations.To overcome this lim-itation,we propose a framework to model heterogeneous behavior of individuals during terrorist attacks.We constructe...Existing simulations of terrorist attacks do not consider individual variations.To overcome this lim-itation,we propose a framework to model heterogeneous behavior of individuals during terrorist attacks.We constructed an emotional model that integrated personality and visual perception for pedestrians.The emotional model was then integrated with pedestrian relationship networks to establish a decision-making model that sup-ported pedestrians’altruistic behaviors.A mapping model has been developed to correlate antisocial personality traits with attack strategies employed by terrorists.Experiments demonstrate that the proposed algorithm can generate practical heterogeneous behaviors that align with existing psychological research findings.展开更多
Brain aging is typically associated with a significant decline in cognitive performance.Vascular risk factors(VRF)and subsequent atherosclerosis(AS)play a major role in this process.Brain resilience reflects the brain...Brain aging is typically associated with a significant decline in cognitive performance.Vascular risk factors(VRF)and subsequent atherosclerosis(AS)play a major role in this process.Brain resilience reflects the brain’s ability to withstand external perturbations,but the relationship of brain resilience with cognition during the aging process remains unclear.Here,we investigated how brain topological resilience(BTR)is associated with cognitive performance in the face of aging and vascular risk factors.We used data from two cross-ethnicity community cohorts,PolyvasculaR Evaluation for Cognitive Impairment and Vascular Events(PRECISE,n=2220)and Sydney Memory and Ageing Study(MAS,n=246).We conducted an attack simulation on brain structural networks based on k-shell decomposition and node degree centrality.BTR was defined based on changes in the size of the largest subgroup of the network during the simulation process.Subsequently,we explored the negative correlations of BTR with age,VRF,and AS,and its positive correlation with cognitive performance.Furthermore,using structural equation modeling(SEM),we constructed path models to analyze the directional dependencies among these variables,demonstrating that aging,AS,and VRF affect cognition by disrupting BTR.Our results also indicated the specificity of this metric,independent of brain volume.Overall,these findings underscore the supportive role of BTR on cognition during aging and highlight its potential application as an imaging marker for objective assessment of brain cognitive performance.展开更多
This research addresses the new level-direction decomposition in the area of image watermarking as the further development of investigations. The main process of realizing a watermarking framework is to generate a wat...This research addresses the new level-direction decomposition in the area of image watermarking as the further development of investigations. The main process of realizing a watermarking framework is to generate a watermarked image with a focus on contourlet embedding representation. The approach performance is evaluated through several indices including the peak signal-to-noise ratio and structural similarity, whereby a set of attacks are carried out using a module of simulated attacks. The obtained information is analyzed through a set of images, using different color models, to enable the calculation of normal correlation. The module of the inverse of contourlet embedding representation is correspondingly employed to obtain the present watermarked image, as long as a number of original images are applied to a scrambling module, to represent the information in disorder. This allows us to evaluate the performance of the proposed approach by analyzing a complicated system, where a decision making system is designed to find the best level and the corresponding direction regarding contourlet embedding representation. The results are illustrated in appropriate level-direction decomposition. The key contribution lies in using a new integration of a set of subsystems, employed based upon the novel mechanism in contourlet embedding representation, in association with the decision making system. The presented approach is efficient compared with state-of-the-art approaches, under a number of serious attacks. A number of benchmarks are obtained and considered along with the proposed framework outcomes. The results support our ideas.展开更多
基金Supported by the Natural Science Foundation of Zhejiang Province(LZ23F020005)Ningbo Science Technology Plan projects(2022Z077 and 2021S091).
文摘Existing simulations of terrorist attacks do not consider individual variations.To overcome this lim-itation,we propose a framework to model heterogeneous behavior of individuals during terrorist attacks.We constructed an emotional model that integrated personality and visual perception for pedestrians.The emotional model was then integrated with pedestrian relationship networks to establish a decision-making model that sup-ported pedestrians’altruistic behaviors.A mapping model has been developed to correlate antisocial personality traits with attack strategies employed by terrorists.Experiments demonstrate that the proposed algorithm can generate practical heterogeneous behaviors that align with existing psychological research findings.
基金National Natural Science Foundation of China(82372040 and 82271329)National Key Research and Development Program of China(2022YFC2504900and 2016YFC0901002)+3 种基金Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences(2019-I2M-5-029)Key Science&Technologies R&D Program of Lishui City(2019ZDYF18)AstraZeneca Investment(China)and Beijing Natural Science Foundation(Z200016)The Sydney Memory and Ageing Study has been funded by three National Health&Medical Research Council(NHMRC)Program Grants(ID350833,ID568969,and APP1093083)。
文摘Brain aging is typically associated with a significant decline in cognitive performance.Vascular risk factors(VRF)and subsequent atherosclerosis(AS)play a major role in this process.Brain resilience reflects the brain’s ability to withstand external perturbations,but the relationship of brain resilience with cognition during the aging process remains unclear.Here,we investigated how brain topological resilience(BTR)is associated with cognitive performance in the face of aging and vascular risk factors.We used data from two cross-ethnicity community cohorts,PolyvasculaR Evaluation for Cognitive Impairment and Vascular Events(PRECISE,n=2220)and Sydney Memory and Ageing Study(MAS,n=246).We conducted an attack simulation on brain structural networks based on k-shell decomposition and node degree centrality.BTR was defined based on changes in the size of the largest subgroup of the network during the simulation process.Subsequently,we explored the negative correlations of BTR with age,VRF,and AS,and its positive correlation with cognitive performance.Furthermore,using structural equation modeling(SEM),we constructed path models to analyze the directional dependencies among these variables,demonstrating that aging,AS,and VRF affect cognition by disrupting BTR.Our results also indicated the specificity of this metric,independent of brain volume.Overall,these findings underscore the supportive role of BTR on cognition during aging and highlight its potential application as an imaging marker for objective assessment of brain cognitive performance.
文摘This research addresses the new level-direction decomposition in the area of image watermarking as the further development of investigations. The main process of realizing a watermarking framework is to generate a watermarked image with a focus on contourlet embedding representation. The approach performance is evaluated through several indices including the peak signal-to-noise ratio and structural similarity, whereby a set of attacks are carried out using a module of simulated attacks. The obtained information is analyzed through a set of images, using different color models, to enable the calculation of normal correlation. The module of the inverse of contourlet embedding representation is correspondingly employed to obtain the present watermarked image, as long as a number of original images are applied to a scrambling module, to represent the information in disorder. This allows us to evaluate the performance of the proposed approach by analyzing a complicated system, where a decision making system is designed to find the best level and the corresponding direction regarding contourlet embedding representation. The results are illustrated in appropriate level-direction decomposition. The key contribution lies in using a new integration of a set of subsystems, employed based upon the novel mechanism in contourlet embedding representation, in association with the decision making system. The presented approach is efficient compared with state-of-the-art approaches, under a number of serious attacks. A number of benchmarks are obtained and considered along with the proposed framework outcomes. The results support our ideas.