虚假数据注入攻击(false data injection attack,FDIA)是威胁电网运行安全的主要因素之一,其主要通过攻击电网中的一些通信环节,误导电力系统的状态估计结果,给电网安全运行带来巨大威胁。针对FDIA难以有效检测及电力系统状态估计中过...虚假数据注入攻击(false data injection attack,FDIA)是威胁电网运行安全的主要因素之一,其主要通过攻击电网中的一些通信环节,误导电力系统的状态估计结果,给电网安全运行带来巨大威胁。针对FDIA难以有效检测及电力系统状态估计中过程噪声与量测噪声两者协方差矩阵非正定问题,将向量自回归(vector auto regression,VAR)模型引入电力系统状态估计,提出一种基于VAR和加权最小二乘法(weighted least squares,WLS)的FDIA检测方法。首先,建立VAR状态估计模型,将量测噪声视为稳定量,只对过程噪声进行估计,解决两者协方差矩阵的非正定问题;其次,分别采用VAR与WLS对电力系统进行状态估计,采用一致性检验与量测量残差检验对2种方法的结果进行检测,以判定是否存在FDIA;最后,IEEE 14节点和IEEE 30节点仿真结果表明,本文所提检测方法能够成功检测到FDIA,且检测成功率较高,从而验证了该方法的可行性及有效性。展开更多
Mobile Ad hoc NETworks (MANETs), characterized by the free move of mobile nodes are more vulnerable to the trivial Denial-of-Service (DoS) attacks such as replay attacks. A replay attacker performs this attack at anyt...Mobile Ad hoc NETworks (MANETs), characterized by the free move of mobile nodes are more vulnerable to the trivial Denial-of-Service (DoS) attacks such as replay attacks. A replay attacker performs this attack at anytime and anywhere in the network by interception and retransmission of the valid signed messages. Consequently, the MANET performance is severally degraded by the overhead produced by the redundant valid messages. In this paper, we propose an enhancement of timestamp discrepancy used to validate a signed message and consequently limiting the impact of a replay attack. Our proposed timestamp concept estimates approximately the time where the message is received and validated by the received node. This estimation is based on the existing parameters defined at the 802.11 MAC layer.展开更多
电池储能系统(battery energy storage systems,BESSs)的假数据注入攻击(false data injection attacks,FDIAs)可以篡改传感器采集的电池测量信息,影响BESSs的荷电状态(state of charge,SOC)估计,从而威胁BESSs的安全与稳定运行。针对...电池储能系统(battery energy storage systems,BESSs)的假数据注入攻击(false data injection attacks,FDIAs)可以篡改传感器采集的电池测量信息,影响BESSs的荷电状态(state of charge,SOC)估计,从而威胁BESSs的安全与稳定运行。针对电池储能系统SOC估计的FDIAs,搭建了电池等效电路模型,利用扩展卡尔曼滤波(extended kalman filter,EKF)算法进行SOC估计,构造了不同强度的FDIAs,并提出一种基于T2V-Transformer(Time2Vector-Transformer)的FDIAs智能化检测方法。考虑到Transformer位置编码不能提取序列数据的时间特征,所以采用Time2Vector将时间转换为嵌入向量,提取电池数据的时间顺序特征,捕获序列周期性和非周期性特征。实验结果表明,与当前主流的长短期记忆网络(long short term memory,LSTM)自动编码器、Transformer等方法相比,所提方法可以检测出不同强度的电池储能系统FDIAs,并且在用时接近的情况下,具有更高的检测准确率。展开更多
文摘虚假数据注入攻击(false data injection attack,FDIA)是威胁电网运行安全的主要因素之一,其主要通过攻击电网中的一些通信环节,误导电力系统的状态估计结果,给电网安全运行带来巨大威胁。针对FDIA难以有效检测及电力系统状态估计中过程噪声与量测噪声两者协方差矩阵非正定问题,将向量自回归(vector auto regression,VAR)模型引入电力系统状态估计,提出一种基于VAR和加权最小二乘法(weighted least squares,WLS)的FDIA检测方法。首先,建立VAR状态估计模型,将量测噪声视为稳定量,只对过程噪声进行估计,解决两者协方差矩阵的非正定问题;其次,分别采用VAR与WLS对电力系统进行状态估计,采用一致性检验与量测量残差检验对2种方法的结果进行检测,以判定是否存在FDIA;最后,IEEE 14节点和IEEE 30节点仿真结果表明,本文所提检测方法能够成功检测到FDIA,且检测成功率较高,从而验证了该方法的可行性及有效性。
文摘Mobile Ad hoc NETworks (MANETs), characterized by the free move of mobile nodes are more vulnerable to the trivial Denial-of-Service (DoS) attacks such as replay attacks. A replay attacker performs this attack at anytime and anywhere in the network by interception and retransmission of the valid signed messages. Consequently, the MANET performance is severally degraded by the overhead produced by the redundant valid messages. In this paper, we propose an enhancement of timestamp discrepancy used to validate a signed message and consequently limiting the impact of a replay attack. Our proposed timestamp concept estimates approximately the time where the message is received and validated by the received node. This estimation is based on the existing parameters defined at the 802.11 MAC layer.
文摘电池储能系统(battery energy storage systems,BESSs)的假数据注入攻击(false data injection attacks,FDIAs)可以篡改传感器采集的电池测量信息,影响BESSs的荷电状态(state of charge,SOC)估计,从而威胁BESSs的安全与稳定运行。针对电池储能系统SOC估计的FDIAs,搭建了电池等效电路模型,利用扩展卡尔曼滤波(extended kalman filter,EKF)算法进行SOC估计,构造了不同强度的FDIAs,并提出一种基于T2V-Transformer(Time2Vector-Transformer)的FDIAs智能化检测方法。考虑到Transformer位置编码不能提取序列数据的时间特征,所以采用Time2Vector将时间转换为嵌入向量,提取电池数据的时间顺序特征,捕获序列周期性和非周期性特征。实验结果表明,与当前主流的长短期记忆网络(long short term memory,LSTM)自动编码器、Transformer等方法相比,所提方法可以检测出不同强度的电池储能系统FDIAs,并且在用时接近的情况下,具有更高的检测准确率。