期刊文献+
共找到1,291篇文章
< 1 2 65 >
每页显示 20 50 100
Epidemic of Rabies and Effect of Its Vaccine against a Dog That Consecutively Attacked Ten People in One Day 被引量:1
1
作者 GAO Li Dong ZHANG Hong +15 位作者 CAI Liang CHEN Bo Zhong JIANG Yong Lin LIU Yun Zhi LV Xin Jun YU Peng Cheng HU Shi Xiong LIU Fu Qiang LI Hao LI Ge Ying SHEN Xin Xin TAO Xiao Yan ZHANG Si Yu LIU Jia Hui TANG Qing LI Jun Hua 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2014年第1期60-64,共5页
On December 21, 20:10, a stray dog consecutively attacked 10 people in Lengshui Village, Ningyuan County, Yongzhou City, Hunan Province, China. The dog was killed by the local CDC staff and vicinity villager, its bra... On December 21, 20:10, a stray dog consecutively attacked 10 people in Lengshui Village, Ningyuan County, Yongzhou City, Hunan Province, China. The dog was killed by the local CDC staff and vicinity villager, its brain tissue sample was taken within 24 h. The epidemic focus was disinfected and the injured people received post exposure prophylaxis (PEP). Pathogens were detected in the tissue sample by the provincial CDC. The immunity and safety of rabies vaccine were assayed after PEP, the injured people were regularly followed up in the following 2 y and 6 mon. 展开更多
关键词 Epidemic of Rabies and Effect of Its Vaccine against a Dog That Consecutively attacked Ten People in One Day gene Figure PV PEP
下载PDF
China 's Home Appliances Industry to be Attacked
2
《China's Foreign Trade》 2001年第2期44-46,共3页
关键词 HOME China s Home Appliances Industry to be attacked
下载PDF
MAGNETIC ACOUSTIC EMISSION  CHARACTERISTICS OF HYDROGEN ATTACKED LOW CARBON STEEL
3
作者 LI Hiaogang MENG Qinghai +3 位作者 CHEN Hua CHEN Jinwei YAO Zhiming KE Wei(State Key Laboratory of Corrosion Science,Institute of Corrosion and Protection of Metals,Chinese Academy of Sciences,Shenyang 110015,China)(Fushun Petroleum Institute,Fushun 113001,China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1996年第2期116-120,共5页
Hydrogen attack occurred in low carbon steel and steel 25CrMo which had been exposed in hydrogen under 18MPa at 450 and 500℃ for 240,480 and 720 h.The methane bubbles and microcracks grow along grain boundaries.The d... Hydrogen attack occurred in low carbon steel and steel 25CrMo which had been exposed in hydrogen under 18MPa at 450 and 500℃ for 240,480 and 720 h.The methane bubbles and microcracks grow along grain boundaries.The degree of hydrogen attack increases with increasing exposure time and temperature.Magnetic acoustic emission(MAE) was used to detect the degree of hydrogen attack.The results show that the characteristics of MAE for samples of low carbon steel and steel 15CrMo with hydrogen attack have changed obviously comparing to the samples without hydrogen attack,and the MAE signals was sensitive to the degree of hydrogen attack at the last stage of hydrogen attack.The magnetic detection way,as a new method of nonrestrictive testing of hydrogen attack,can be used to detect the hydrogen attack in practice. 展开更多
关键词 magnetic acoustic emission hydrogen attack low carbon steel steel 15 CrMo
下载PDF
Ensuring Secure Platooning of Constrained Intelligent and Connected Vehicles Against Byzantine Attacks:A Distributed MPC Framework 被引量:1
4
作者 Henglai Wei Hui Zhang +1 位作者 Kamal AI-Haddad Yang Shi 《Engineering》 SCIE EI CAS CSCD 2024年第2期35-46,共12页
This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control fram... This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings. 展开更多
关键词 Model predictive control Resilient control Platoon control Intelligent and connected vehicle Byzantine attacks
下载PDF
Phishing Attacks Detection Using EnsembleMachine Learning Algorithms
5
作者 Nisreen Innab Ahmed Abdelgader Fadol Osman +4 位作者 Mohammed Awad Mohammed Ataelfadiel Marwan Abu-Zanona Bassam Mohammad Elzaghmouri Farah H.Zawaideh Mouiad Fadeil Alawneh 《Computers, Materials & Continua》 SCIE EI 2024年第7期1325-1345,共21页
Phishing,an Internet fraudwhere individuals are deceived into revealing critical personal and account information,poses a significant risk to both consumers and web-based institutions.Data indicates a persistent rise ... Phishing,an Internet fraudwhere individuals are deceived into revealing critical personal and account information,poses a significant risk to both consumers and web-based institutions.Data indicates a persistent rise in phishing attacks.Moreover,these fraudulent schemes are progressively becoming more intricate,thereby rendering them more challenging to identify.Hence,it is imperative to utilize sophisticated algorithms to address this issue.Machine learning is a highly effective approach for identifying and uncovering these harmful behaviors.Machine learning(ML)approaches can identify common characteristics in most phishing assaults.In this paper,we propose an ensemble approach and compare it with six machine learning techniques to determine the type of website and whether it is normal or not based on two phishing datasets.After that,we used the normalization technique on the dataset to transform the range of all the features into the same range.The findings of this paper for all algorithms are as follows in the first dataset based on accuracy,precision,recall,and F1-score,respectively:Decision Tree(DT)(0.964,0.961,0.976,0.968),Random Forest(RF)(0.970,0.964,0.984,0.974),Gradient Boosting(GB)(0.960,0.959,0.971,0.965),XGBoost(XGB)(0.973,0.976,0.976,0.976),AdaBoost(0.934,0.934,0.950,0.942),Multi Layer Perceptron(MLP)(0.970,0.971,0.976,0.974)and Voting(0.978,0.975,0.987,0.981).So,the Voting classifier gave the best results.While in the second dataset,all the algorithms gave the same results in four evaluation metrics,which indicates that each of them can effectively accomplish the prediction process.Also,this approach outperformed the previous work in detecting phishing websites with high accuracy,a lower false negative rate,a shorter prediction time,and a lower false positive rate. 展开更多
关键词 Social engineering ATTACKS phishing attacks machine learning SECURITY artificial intelligence
下载PDF
Countermeasure against blinding attack for single-photon detectors in quantum key distribution
6
作者 Lianjun Jiang Dongdong Li +12 位作者 Yuqiang Fang Meisheng Zhao Ming Liu Zhilin Xie Yukang Zhao Yanlin Tang Wei Jiang Houlin Fang Rui Ma Lei Cheng Weifeng Yang Songtao Han Shibiao Tang 《Journal of Semiconductors》 EI CAS CSCD 2024年第4期76-81,共6页
Quantum key distribution(QKD),rooted in quantum mechanics,offers information-theoretic security.However,practi-cal systems open security threats due to imperfections,notably bright-light blinding attacks targeting sin... Quantum key distribution(QKD),rooted in quantum mechanics,offers information-theoretic security.However,practi-cal systems open security threats due to imperfections,notably bright-light blinding attacks targeting single-photon detectors.Here,we propose a concise,robust defense strategy for protecting single-photon detectors in QKD systems against blinding attacks.Our strategy uses a dual approach:detecting the bias current of the avalanche photodiode(APD)to defend against con-tinuous-wave blinding attacks,and monitoring the avalanche amplitude to protect against pulsed blinding attacks.By integrat-ing these two branches,the proposed solution effectively identifies and mitigates a wide range of bright light injection attempts,significantly enhancing the resilience of QKD systems against various bright-light blinding attacks.This method forti-fies the safeguards of quantum communications and offers a crucial contribution to the field of quantum information security. 展开更多
关键词 quantum key distribution single photon detector blinding attack pulsed blinding attack COUNTERMEASURE quan-tum communication
下载PDF
An Innovative Approach Using TKN-Cryptology for Identifying the Replay Assault
7
作者 Syeda Wajiha Zahra Muhammad Nadeem +6 位作者 Ali Arshad Saman Riaz Muhammad Abu Bakr Ashit Kumar Dutta Zaid Alzaid Badr Almutairi Sultan Almotairi 《Computers, Materials & Continua》 SCIE EI 2024年第1期589-616,共28页
Various organizations store data online rather than on physical servers.As the number of user’s data stored in cloud servers increases,the attack rate to access data from cloud servers also increases.Different resear... Various organizations store data online rather than on physical servers.As the number of user’s data stored in cloud servers increases,the attack rate to access data from cloud servers also increases.Different researchers worked on different algorithms to protect cloud data from replay attacks.None of the papers used a technique that simultaneously detects a full-message and partial-message replay attack.This study presents the development of a TKN(Text,Key and Name)cryptographic algorithm aimed at protecting data from replay attacks.The program employs distinct ways to encrypt plain text[P],a user-defined Key[K],and a Secret Code[N].The novelty of the TKN cryptographic algorithm is that the bit value of each text is linked to another value with the help of the proposed algorithm,and the length of the cipher text obtained is twice the length of the original text.In the scenario that an attacker executes a replay attack on the cloud server,engages in cryptanalysis,or manipulates any data,it will result in automated modification of all associated values inside the backend.This mechanism has the benefit of enhancing the detectability of replay attacks.Nevertheless,the attacker cannot access data not included in any of the papers,regardless of how effective the attack strategy is.At the end of paper,the proposed algorithm’s novelty will be compared with different algorithms,and it will be discussed how far the proposed algorithm is better than all other algorithms. 展开更多
关键词 Replay attack MALWARE message attack file encryption CRYPTOLOGY data security
下载PDF
Evaluating the Efficacy of Latent Variables in Mitigating Data Poisoning Attacks in the Context of Bayesian Networks:An Empirical Study
8
作者 Shahad Alzahrani Hatim Alsuwat Emad Alsuwat 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1635-1654,共20页
Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent ... Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams.One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks,wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance.In this research paper,we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms.Our framework utilizes latent variables to quantify the amount of belief between every two nodes in each causal model over time.We use our innovative methodology to tackle an important issue with data poisoning assaults in the context of Bayesian networks.With regard to four different forms of data poisoning attacks,we specifically aim to strengthen the security and dependability of Bayesian network structure learning techniques,such as the PC algorithm.By doing this,we explore the complexity of this area and offer workablemethods for identifying and reducing these sneaky dangers.Additionally,our research investigates one particular use case,the“Visit to Asia Network.”The practical consequences of using uncertainty as a way to spot cases of data poisoning are explored in this inquiry,which is of utmost relevance.Our results demonstrate the promising efficacy of latent variables in detecting and mitigating the threat of data poisoning attacks.Additionally,our proposed latent-based framework proves to be sensitive in detecting malicious data poisoning attacks in the context of stream data. 展开更多
关键词 Bayesian networks data poisoning attacks latent variables structure learning algorithms adversarial attacks
下载PDF
Novel cyber-physical collaborative detection and localization method against dynamic load altering attacks in smart energy grids
9
作者 Xinyu Wang Xiangjie Wang +2 位作者 Xiaoyuan Luo Xinping Guan Shuzheng Wang 《Global Energy Interconnection》 EI CSCD 2024年第3期362-376,共15页
Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical a... Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical attacks,such as dynamic load-altering attacks(DLAAs)has introduced great challenges to the security of smart energy grids.Thus,this study developed a novel cyber-physical collaborative security framework for DLAAs in smart energy grids.The proposed framework integrates attack prediction in the cyber layer with the detection and localization of attacks in the physical layer.First,a data-driven method was proposed to predict the DLAA sequence in the cyber layer.By designing a double radial basis function network,the influence of disturbances on attack prediction can be eliminated.Based on the prediction results,an unknown input observer-based detection and localization method was further developed for the physical layer.In addition,an adaptive threshold was designed to replace the traditional precomputed threshold and improve the detection performance of the DLAAs.Consequently,through the collaborative work of the cyber-physics layer,injected DLAAs were effectively detected and located.Compared with existing methodologies,the simulation results on IEEE 14-bus and 118-bus power systems verified the superiority of the proposed cyber-physical collaborative detection and localization against DLAAs. 展开更多
关键词 Smart energy grids Cyber-physical system Dynamic load altering attacks Attack prediction Detection and localization
下载PDF
Experimental Study of Local Scour Around Four Piles Under Different Attack Angles and Gap Ratios
10
作者 LIU Ming-ming TANG Guo-qiang +1 位作者 JIN Xin GENG Shao-yang 《China Ocean Engineering》 SCIE EI CSCD 2024年第4期612-624,共13页
In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set o... In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set of four piles,each subjected to different hydromechanical conditions.In particular,this study aimed to determine how different attack angles—the angles at which the water flow impinges on the piles,and gap ratios—the ratios of the spacing between the piles to their diameters,influence the extent and nature of scour.A comprehensive series of 35 carefully designed experiments were orchestrated,each designed to dissect the nuances in how the gap ratio and attack angle might contribute to changes in the local scour observed at the base of pile groups.During these experimental trials,a wealth of local scour data were collected to support the analysis.These data included precise topographic profiles of the sediment bed around the pile groups,as well as detailed scour time histories showing the evolution of scour at strategic feature points throughout the test procedure.The analysis of the experimental data provided interesting insights.The study revealed that the interplay between the gap ratio and the attack angle had a pronounced influence on the scouring dynamics of the pile groups.One of the key observations was that the initial phases of scour,particularly within the first hour of water flow exposure,were characterized by a sharp increase in the scour depth occurring immediately in front of the piles.After this initial rapid development,the scour depth transitioned to a more gradual change rate.In contrast,the scour topography around the piles continuously evolved.This suggests that sediment displacement and the associated sculpting of the seabed around pile foundations are sustained and progressive processes,altering the underwater landscape over time.The results of this empirical investigation have significant implications for the design and construction of offshore multi-pile foundations,providing a critical reference for engineers and designers to estimate the expected scour depth around such structures,which is an integral part of decisions regarding foundation design,selection of structural materials,and implementation of scour protection measures. 展开更多
关键词 local scour PILES gap ratio attack angle
下载PDF
Toward Trustworthy Decision-Making for Autonomous Vehicles:A Robust Reinforcement Learning Approach with Safety Guarantees
11
作者 Xiangkun He Wenhui Huang Chen Lv 《Engineering》 SCIE EI CAS CSCD 2024年第2期77-89,共13页
While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present... While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies. 展开更多
关键词 Autonomous vehicle DECISION-MAKING Reinforcement learning Adversarial attack Safety guarantee
下载PDF
Internet of Things Authentication Protocols: Comparative Study
12
作者 Souhayla Dargaoui Mourade Azrour +3 位作者 Ahmad ElAllaoui Azidine Guezzaz Abdulatif Alabdulatif Abdullah Alnajim 《Computers, Materials & Continua》 SCIE EI 2024年第4期65-91,共27页
Nowadays, devices are connected across all areas, from intelligent buildings and smart cities to Industry 4.0 andsmart healthcare. With the exponential growth of Internet of Things usage in our world, IoT security is ... Nowadays, devices are connected across all areas, from intelligent buildings and smart cities to Industry 4.0 andsmart healthcare. With the exponential growth of Internet of Things usage in our world, IoT security is still thebiggest challenge for its deployment. The main goal of IoT security is to ensure the accessibility of services providedby an IoT environment, protect privacy, and confidentiality, and guarantee the safety of IoT users, infrastructures,data, and devices. Authentication, as the first line of defense against security threats, becomes the priority ofeveryone. It can either grant or deny users access to resources according to their legitimacy. As a result, studyingand researching authentication issues within IoT is extremely important. As a result, studying and researchingauthentication issues within IoT is extremely important. This article presents a comparative study of recent researchin IoT security;it provides an analysis of recent authentication protocols from2019 to 2023 that cover several areaswithin IoT (such as smart cities, healthcare, and industry). This survey sought to provide an IoT security researchsummary, the biggest susceptibilities, and attacks, the appropriate technologies, and the most used simulators. Itillustrates that the resistance of protocols against attacks, and their computational and communication cost arelinked directly to the cryptography technique used to build it. Furthermore, it discusses the gaps in recent schemesand provides some future research directions. 展开更多
关键词 ATTACKS CRYPTOGRAPHY Internet of Things SECURITY AUTHENTICATION
下载PDF
CORMAND2--针对工业机器人的欺骗攻击
13
作者 Hongyi Pu Liang He +2 位作者 Peng Cheng Jiming Chen Youxian Sun 《Engineering》 SCIE EI CAS CSCD 2024年第1期186-201,共16页
Industrial robots are becoming increasingly vulnerable to cyber incidents and attacks,particularly with the dawn of the Industrial Internet-of-Things(IIoT).To gain a comprehensive understanding of these cyber risks,vu... Industrial robots are becoming increasingly vulnerable to cyber incidents and attacks,particularly with the dawn of the Industrial Internet-of-Things(IIoT).To gain a comprehensive understanding of these cyber risks,vulnerabilities of industrial robots were analyzed empirically,using more than three million communication packets collected with testbeds of two ABB IRB120 robots and five other robots from various original equipment manufacturers(OEMs).This analysis,guided by the confidentiality-integrity-availability(CIA)triad,uncovers robot vulnerabilities in three dimensions:confidentiality,integrity,and availability.These vulnerabilities were used to design Covering Robot Manipulation via Data Deception(CORMAND2),an automated cyber-physical attack against industrial robots.CORMAND2 manipulates robot operation while deceiving the Supervisory Control and Data Acquisition(SCADA)system that the robot is operating normally by modifying the robot’s movement data and data deception.CORMAND2 and its capability of degrading the manufacturing was validated experimentally using the aforementioned seven robots from six different OEMs.CORMAND2 unveils the limitations of existing anomaly detection systems,more specifically the assumption of the authenticity of SCADA-received movement data,to which we propose mitigations for. 展开更多
关键词 Industrial robots Vulnerability analysis Deception attacks DEFENSES
下载PDF
Survey on Video Security:Examining Threats,Challenges,and Future Trends
14
作者 Ali Asghar Amna Shifa Mamoona Naveed Asghar 《Computers, Materials & Continua》 SCIE EI 2024年第9期3591-3635,共45页
Videos represent the most prevailing form of digital media for communication,information dissemination,and monitoring.However,theirwidespread use has increased the risks of unauthorised access andmanipulation,posing s... Videos represent the most prevailing form of digital media for communication,information dissemination,and monitoring.However,theirwidespread use has increased the risks of unauthorised access andmanipulation,posing significant challenges.In response,various protection approaches have been developed to secure,authenticate,and ensure the integrity of digital videos.This study provides a comprehensive survey of the challenges associated with maintaining the confidentiality,integrity,and availability of video content,and examining how it can be manipulated.It then investigates current developments in the field of video security by exploring two critical research questions.First,it examine the techniques used by adversaries to compromise video data and evaluate their impact.Understanding these attack methodologies is crucial for developing effective defense mechanisms.Second,it explores the various security approaches that can be employed to protect video data,enhancing its transparency,integrity,and trustworthiness.It compares the effectiveness of these approaches across different use cases,including surveillance,video on demand(VoD),and medical videos related to disease diagnostics.Finally,it identifies potential research opportunities to enhance video data protection in response to the evolving threat landscape.Through this investigation,this study aims to contribute to the ongoing efforts in securing video data,providing insights that are vital for researchers,practitioners,and policymakers dedicated to enhancing the safety and reliability of video content in our digital world. 展开更多
关键词 ATTACKS threats security services video manipulation video security
下载PDF
ATSSC:An Attack Tolerant System in Serverless Computing
15
作者 Zhang Shuai Guo Yunfei +2 位作者 Hu Hongchao Liu Wenyan Wang Yawen 《China Communications》 SCIE CSCD 2024年第6期192-205,共14页
Serverless computing is a promising paradigm in cloud computing that greatly simplifies cloud programming.With serverless computing,developers only provide function code to serverless platform,and these functions are ... Serverless computing is a promising paradigm in cloud computing that greatly simplifies cloud programming.With serverless computing,developers only provide function code to serverless platform,and these functions are invoked by its driven events.Nonetheless,security threats in serverless computing such as vulnerability-based security threats have become the pain point hindering its wide adoption.The ideas in proactive defense such as redundancy,diversity and dynamic provide promising approaches to protect against cyberattacks.However,these security technologies are mostly applied to serverless platform based on“stacked”mode,as they are designed independent with serverless computing.The lack of security consideration in the initial design makes it especially challenging to achieve the all life cycle protection for serverless application with limited cost.In this paper,we present ATSSC,a proactive defense enabled attack tolerant serverless platform.ATSSC integrates the characteristic of redundancy,diversity and dynamic into serverless seamless to achieve high-level security and efficiency.Specifically,ATSSC constructs multiple diverse function replicas to process the driven events and performs cross-validation to verify the results.In order to create diverse function replicas,both software diversity and environment diversity are adopted.Furthermore,a dynamic function refresh strategy is proposed to keep the clean state of serverless functions.We implement ATSSC based on Kubernetes and Knative.Analysis and experimental results demonstrate that ATSSC can effectively protect serverless computing against cyberattacks with acceptable costs. 展开更多
关键词 active defense attack tolerant cloud computing SECURITY serverless computing
下载PDF
Distributed Platooning Control of Automated Vehicles Subject to Replay Attacks Based on Proportional Integral Observers
16
作者 Meiling Xie Derui Ding +3 位作者 Xiaohua Ge Qing-Long Han Hongli Dong Yan Song 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第9期1954-1966,共13页
Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issu... Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks.A proportional-integral-observer(PIO)with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles.Then,a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks.In light of such a scheme and the common properties of Laplace matrices,the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one.Furthermore,some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory.The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies.Finally,a simulation example is provided to illustrate the effectiveness of the proposed control strategy. 展开更多
关键词 Automated vehicles platooning control proportional-integral-observers(PIOs) replay attacks TIME-DELAYS
下载PDF
Design of an Efficient and Provable Secure Key Exchange Protocol for HTTP Cookies
17
作者 Waseem Akram Khalid Mahmood +3 位作者 Hafiz Burhan ul Haq Muhammad Asif Shehzad Ashraf Chaudhry Taeshik Shon 《Computers, Materials & Continua》 SCIE EI 2024年第7期263-280,共18页
Cookies are considered a fundamental means of web application services for authenticating various Hypertext Transfer Protocol(HTTP)requests andmaintains the states of clients’information over the Internet.HTTP cookie... Cookies are considered a fundamental means of web application services for authenticating various Hypertext Transfer Protocol(HTTP)requests andmaintains the states of clients’information over the Internet.HTTP cookies are exploited to carry client patterns observed by a website.These client patterns facilitate the particular client’s future visit to the corresponding website.However,security and privacy are the primary concerns owing to the value of information over public channels and the storage of client information on the browser.Several protocols have been introduced that maintain HTTP cookies,but many of those fail to achieve the required security,or require a lot of resource overheads.In this article,we have introduced a lightweight Elliptic Curve Cryptographic(ECC)based protocol for authenticating client and server transactions to maintain the privacy and security of HTTP cookies.Our proposed protocol uses a secret key embedded within a cookie.The proposed protocol ismore efficient and lightweight than related protocols because of its reduced computation,storage,and communication costs.Moreover,the analysis presented in this paper confirms that proposed protocol resists various known attacks. 展开更多
关键词 COOKIES authentication protocol impersonation attack ECC
下载PDF
An Empirical Study on the Effectiveness of Adversarial Examples in Malware Detection
18
作者 Younghoon Ban Myeonghyun Kim Haehyun Cho 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3535-3563,共29页
Antivirus vendors and the research community employ Machine Learning(ML)or Deep Learning(DL)-based static analysis techniques for efficient identification of new threats,given the continual emergence of novel malware ... Antivirus vendors and the research community employ Machine Learning(ML)or Deep Learning(DL)-based static analysis techniques for efficient identification of new threats,given the continual emergence of novel malware variants.On the other hand,numerous researchers have reported that Adversarial Examples(AEs),generated by manipulating previously detected malware,can successfully evade ML/DL-based classifiers.Commercial antivirus systems,in particular,have been identified as vulnerable to such AEs.This paper firstly focuses on conducting black-box attacks to circumvent ML/DL-based malware classifiers.Our attack method utilizes seven different perturbations,including Overlay Append,Section Append,and Break Checksum,capitalizing on the ambiguities present in the PE format,as previously employed in evasion attack research.By directly applying the perturbation techniques to PE binaries,our attack method eliminates the need to grapple with the problem-feature space dilemma,a persistent challenge in many evasion attack studies.Being a black-box attack,our method can generate AEs that successfully evade both DL-based and ML-based classifiers.Also,AEs generated by the attack method retain their executability and malicious behavior,eliminating the need for functionality verification.Through thorogh evaluations,we confirmed that the attack method achieves an evasion rate of 65.6%against well-known ML-based malware detectors and can reach a remarkable 99%evasion rate against well-known DL-based malware detectors.Furthermore,our AEs demonstrated the capability to bypass detection by 17%of vendors out of the 64 on VirusTotal(VT).In addition,we propose a defensive approach that utilizes Trend Locality Sensitive Hashing(TLSH)to construct a similarity-based defense model.Through several experiments on the approach,we verified that our defense model can effectively counter AEs generated by the perturbation techniques.In conclusion,our defense model alleviates the limitation of the most promising defense method,adversarial training,which is only effective against the AEs that are included in the training classifiers. 展开更多
关键词 Malware classification machine learning adversarial examples evasion attack CYBERSECURITY
下载PDF
Mitigating Blackhole and Greyhole Routing Attacks in Vehicular Ad Hoc Networks Using Blockchain Based Smart Contracts
19
作者 Abdulatif Alabdulatif Mada Alharbi +1 位作者 Abir Mchergui Tarek Moulahi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期2005-2021,共17页
The rapid increase in vehicle traffic volume in modern societies has raised the need to develop innovative solutions to reduce traffic congestion and enhance traffic management efficiency.Revolutionary advanced techno... The rapid increase in vehicle traffic volume in modern societies has raised the need to develop innovative solutions to reduce traffic congestion and enhance traffic management efficiency.Revolutionary advanced technology,such as Intelligent Transportation Systems(ITS),enables improved traffic management,helps eliminate congestion,and supports a safer environment.ITS provides real-time information on vehicle traffic and transportation systems that can improve decision-making for road users.However,ITS suffers from routing issues at the network layer when utilising Vehicular Ad Hoc Networks(VANETs).This is because each vehicle plays the role of a router in this network,which leads to a complex vehicle communication network,causing issues such as repeated link breakages between vehicles resulting from the mobility of the network and rapid topological variation.This may lead to loss or delay in packet transmissions;this weakness can be exploited in routing attacks,such as black-hole and gray-hole attacks,that threaten the availability of ITS services.In this paper,a Blockchain-based smart contracts model is proposed to offer convenient and comprehensive security mechanisms,enhancing the trustworthiness between vehicles.Self-Classification Blockchain-Based Contracts(SCBC)and Voting-Classification Blockchain-Based Contracts(VCBC)are utilised in the proposed protocol.The results show that VCBC succeeds in attaining better results in PDR and TP performance even in the presence of Blackhole and Grayhole attacks. 展开更多
关键词 Blockchain data privacy machine learning routing attacks smart contract VANET
下载PDF
Robust Facial Biometric Authentication System Using Pupillary Light Reflex for Liveness Detection of Facial Images
20
作者 Puja S.Prasad Adepu Sree Lakshmi +5 位作者 Sandeep Kautish Simar Preet Singh Rajesh Kumar Shrivastava Abdulaziz S.Almazyad Hossam M.Zawbaa Ali Wagdy Mohamed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期725-739,共15页
Pupil dynamics are the important characteristics of face spoofing detection.The face recognition system is one of the most used biometrics for authenticating individual identity.The main threats to the facial recognit... Pupil dynamics are the important characteristics of face spoofing detection.The face recognition system is one of the most used biometrics for authenticating individual identity.The main threats to the facial recognition system are different types of presentation attacks like print attacks,3D mask attacks,replay attacks,etc.The proposed model uses pupil characteristics for liveness detection during the authentication process.The pupillary light reflex is an involuntary reaction controlling the pupil’s diameter at different light intensities.The proposed framework consists of two-phase methodologies.In the first phase,the pupil’s diameter is calculated by applying stimulus(light)in one eye of the subject and calculating the constriction of the pupil size on both eyes in different video frames.The above measurement is converted into feature space using Kohn and Clynes model-defined parameters.The Support Vector Machine is used to classify legitimate subjects when the diameter change is normal(or when the eye is alive)or illegitimate subjects when there is no change or abnormal oscillations of pupil behavior due to the presence of printed photograph,video,or 3D mask of the subject in front of the camera.In the second phase,we perform the facial recognition process.Scale-invariant feature transform(SIFT)is used to find the features from the facial images,with each feature having a size of a 128-dimensional vector.These features are scale,rotation,and orientation invariant and are used for recognizing facial images.The brute force matching algorithm is used for matching features of two different images.The threshold value we considered is 0.08 for good matches.To analyze the performance of the framework,we tested our model in two Face antispoofing datasets named Replay attack datasets and CASIA-SURF datasets,which were used because they contain the videos of the subjects in each sample having three modalities(RGB,IR,Depth).The CASIA-SURF datasets showed an 89.9%Equal Error Rate,while the Replay Attack datasets showed a 92.1%Equal Error Rate. 展开更多
关键词 SIFT PUPIL CASIA-SURF pupillary light reflex replay attack dataset brute force
下载PDF
上一页 1 2 65 下一页 到第
使用帮助 返回顶部