期刊文献+
共找到1,034篇文章
< 1 2 52 >
每页显示 20 50 100
Unsupervised multi-modal image translation based on the squeeze-and-excitation mechanism and feature attention module
1
作者 胡振涛 HU Chonghao +1 位作者 YANG Haoran SHUAI Weiwei 《High Technology Letters》 EI CAS 2024年第1期23-30,共8页
The unsupervised multi-modal image translation is an emerging domain of computer vision whose goal is to transform an image from the source domain into many diverse styles in the target domain.However,the multi-genera... The unsupervised multi-modal image translation is an emerging domain of computer vision whose goal is to transform an image from the source domain into many diverse styles in the target domain.However,the multi-generator mechanism is employed among the advanced approaches available to model different domain mappings,which results in inefficient training of neural networks and pattern collapse,leading to inefficient generation of image diversity.To address this issue,this paper introduces a multi-modal unsupervised image translation framework that uses a generator to perform multi-modal image translation.Specifically,firstly,the domain code is introduced in this paper to explicitly control the different generation tasks.Secondly,this paper brings in the squeeze-and-excitation(SE)mechanism and feature attention(FA)module.Finally,the model integrates multiple optimization objectives to ensure efficient multi-modal translation.This paper performs qualitative and quantitative experiments on multiple non-paired benchmark image translation datasets while demonstrating the benefits of the proposed method over existing technologies.Overall,experimental results have shown that the proposed method is versatile and scalable. 展开更多
关键词 multi-modal image translation generative adversarial network(GAN) squeezeand-excitation(SE)mechanism feature attention(fa)module
下载PDF
Traffic Sign Recognition for Autonomous Vehicle Using Optimized YOLOv7 and Convolutional Block Attention Module 被引量:1
2
作者 P.Kuppusamy M.Sanjay +1 位作者 P.V.Deepashree C.Iwendi 《Computers, Materials & Continua》 SCIE EI 2023年第10期445-466,共22页
The infrastructure and construction of roads are crucial for the economic and social development of a region,but traffic-related challenges like accidents and congestion persist.Artificial Intelligence(AI)and Machine ... The infrastructure and construction of roads are crucial for the economic and social development of a region,but traffic-related challenges like accidents and congestion persist.Artificial Intelligence(AI)and Machine Learning(ML)have been used in road infrastructure and construction,particularly with the Internet of Things(IoT)devices.Object detection in Computer Vision also plays a key role in improving road infrastructure and addressing trafficrelated problems.This study aims to use You Only Look Once version 7(YOLOv7),Convolutional Block Attention Module(CBAM),the most optimized object-detection algorithm,to detect and identify traffic signs,and analyze effective combinations of adaptive optimizers like Adaptive Moment estimation(Adam),Root Mean Squared Propagation(RMSprop)and Stochastic Gradient Descent(SGD)with the YOLOv7.Using a portion of German traffic signs for training,the study investigates the feasibility of adopting smaller datasets while maintaining high accuracy.The model proposed in this study not only improves traffic safety by detecting traffic signs but also has the potential to contribute to the rapid development of autonomous vehicle systems.The study results showed an impressive accuracy of 99.7%when using a batch size of 8 and the Adam optimizer.This high level of accuracy demonstrates the effectiveness of the proposed model for the image classification task of traffic sign recognition. 展开更多
关键词 Object detection traffic sign detection YOLOv7 convolutional block attention module road sign detection ADAM
下载PDF
Simplified Inception Module Based Hadamard Attention Mechanism for Medical Image Classification
3
作者 Yanlin Jin Zhiming You Ningyin Cai 《Journal of Computer and Communications》 2023年第6期1-18,共18页
Medical image classification has played an important role in the medical field, and the related method based on deep learning has become an important and powerful technique in medical image classification. In this art... Medical image classification has played an important role in the medical field, and the related method based on deep learning has become an important and powerful technique in medical image classification. In this article, we propose a simplified inception module based Hadamard attention (SI + HA) mechanism for medical image classification. Specifically, we propose a new attention mechanism: Hadamard attention mechanism. It improves the accuracy of medical image classification without greatly increasing the complexity of the model. Meanwhile, we adopt a simplified inception module to improve the utilization of parameters. We use two medical image datasets to prove the superiority of our proposed method. In the BreakHis dataset, the AUCs of our method can reach 98.74%, 98.38%, 98.61% and 97.67% under the magnification factors of 40×, 100×, 200× and 400×, respectively. The accuracies can reach 95.67%, 94.17%, 94.53% and 94.12% under the magnification factors of 40×, 100×, 200× and 400×, respectively. In the KIMIA Path 960 dataset, the AUCs and accuracy of our method can reach 99.91% and 99.03%. It is superior to the currently popular methods and can significantly improve the effectiveness of medical image classification. 展开更多
关键词 Deep Learning Medical Image Classification attention Mechanism Inception module
下载PDF
An enhanced method for predicting and analysing forest fires using an attention-based CNN model
4
作者 Shaifali Bhatt Usha Chouhan 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第4期115-127,共13页
Prediction,prevention,and control of forest fires are crucial on at all scales.Developing effective fire detection systems can aid in their control.This study proposes a novel CNN(convolutional neural network)using an... Prediction,prevention,and control of forest fires are crucial on at all scales.Developing effective fire detection systems can aid in their control.This study proposes a novel CNN(convolutional neural network)using an attention blocks module which combines an attention module with numerous input layers to enhance the performance of neural networks.The suggested model focuses on predicting the damage affected/burned areas due to possible wildfires and evaluating the multilateral interactions between the pertinent factors.The results show the impacts of CNN using attention blocks for feature extraction and to better understand how ecosystems are affected by meteorological factors.For selected meteorological data,RMSE 12.08 and MAE 7.45 values provide higher predictive power for selecting relevant and necessary features to provide optimal performance with less operational and computational costs.These findings show that the suggested strategy is reliable and effective for planning and managing fire-prone regions as well as for predicting forest fire damage. 展开更多
关键词 CNN attention module Fire prediction ECOSYSTEM Damage prediction
下载PDF
Two-Layer Attention Feature Pyramid Network for Small Object Detection
5
作者 Sheng Xiang Junhao Ma +2 位作者 Qunli Shang Xianbao Wang Defu Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期713-731,共19页
Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain les... Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors. 展开更多
关键词 Small object detection two-layer attention module small object detail enhancement module feature pyramid network
下载PDF
Improved multi-scale inverse bottleneck residual network based on triplet parallel attention for apple leaf disease identification
6
作者 Lei Tang Jizheng Yi Xiaoyao Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期901-922,共22页
Accurate diagnosis of apple leaf diseases is crucial for improving the quality of apple production and promoting the development of the apple industry. However, apple leaf diseases do not differ significantly from ima... Accurate diagnosis of apple leaf diseases is crucial for improving the quality of apple production and promoting the development of the apple industry. However, apple leaf diseases do not differ significantly from image texture and structural information. The difficulties in disease feature extraction in complex backgrounds slow the related research progress. To address the problems, this paper proposes an improved multi-scale inverse bottleneck residual network model based on a triplet parallel attention mechanism, which is built upon ResNet-50, while improving and combining the inception module and ResNext inverse bottleneck blocks, to recognize seven types of apple leaf(including six diseases of alternaria leaf spot, brown spot, grey spot, mosaic, rust, scab, and one healthy). First, the 3×3 convolutions in some of the residual modules are replaced by multi-scale residual convolutions, the convolution kernels of different sizes contained in each branch of the multi-scale convolution are applied to extract feature maps of different sizes, and the outputs of these branches are multi-scale fused by summing to enrich the output features of the images. Second, the global layer-wise dynamic coordinated inverse bottleneck structure is used to reduce the network feature loss. The inverse bottleneck structure makes the image information less lossy when transforming from different dimensional feature spaces. The fusion of multi-scale and layer-wise dynamic coordinated inverse bottlenecks makes the model effectively balances computational efficiency and feature representation capability, and more robust with a combination of horizontal and vertical features in the fine identification of apple leaf diseases. Finally, after each improved module, a triplet parallel attention module is integrated with cross-dimensional interactions among channels through rotations and residual transformations, which improves the parallel search efficiency of important features and the recognition rate of the network with relatively small computational costs while the dimensional dependencies are improved. To verify the validity of the model in this paper, we uniformly enhance apple leaf disease images screened from the public data sets of Plant Village, Baidu Flying Paddle, and the Internet. The final processed image count is 14,000. The ablation study, pre-processing comparison, and method comparison are conducted on the processed datasets. The experimental results demonstrate that the proposed method reaches 98.73% accuracy on the adopted datasets, which is 1.82% higher than the classical ResNet-50 model, and 0.29% better than the apple leaf disease datasets before preprocessing. It also achieves competitive results in apple leaf disease identification compared to some state-ofthe-art methods. 展开更多
关键词 multi-scale module inverse bottleneck structure triplet parallel attention apple leaf disease
下载PDF
Fusion of Convolutional Self-Attention and Cross-Dimensional Feature Transformationfor Human Posture Estimation
7
作者 Anzhan Liu Yilu Ding Xiangyang Lu 《Journal of Beijing Institute of Technology》 EI CAS 2024年第4期346-360,共15页
Human posture estimation is a prominent research topic in the fields of human-com-puter interaction,motion recognition,and other intelligent applications.However,achieving highaccuracy in key point localization,which ... Human posture estimation is a prominent research topic in the fields of human-com-puter interaction,motion recognition,and other intelligent applications.However,achieving highaccuracy in key point localization,which is crucial for intelligent applications,contradicts the lowdetection accuracy of human posture detection models in practical scenarios.To address this issue,a human pose estimation network called AT-HRNet has been proposed,which combines convolu-tional self-attention and cross-dimensional feature transformation.AT-HRNet captures significantfeature information from various regions in an adaptive manner,aggregating them through convolu-tional operations within the local receptive domain.The residual structures TripNeck and Trip-Block of the high-resolution network are designed to further refine the key point locations,wherethe attention weight is adjusted by a cross-dimensional interaction to obtain more features.To vali-date the effectiveness of this network,AT-HRNet was evaluated using the COCO2017 dataset.Theresults show that AT-HRNet outperforms HRNet by improving 3.2%in mAP,4.0%in AP75,and3.9%in AP^(M).This suggests that AT-HRNet can offer more beneficial solutions for human posture estimation. 展开更多
关键词 human posture estimation adaptive fusion method cross-dimensional interaction attention module high-resolution network
下载PDF
基于改进I-Attention U-Net的锌浮选泡沫图像分割算法 被引量:2
8
作者 唐朝晖 郭俊岑 +2 位作者 张虎 谢永芳 钟宇泽 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第2期12-22,共11页
针对泡沫图像的高度复杂性导致其难以被准确分割的难题,本文提出了一种新的I-Attention U-Net网络用于泡沫图像分割.该算法以U-Net网络作为主干网络,使用Inception模块替换第一卷积池化层来提取泡沫图像的多尺度、多层次浅层特征信息;... 针对泡沫图像的高度复杂性导致其难以被准确分割的难题,本文提出了一种新的I-Attention U-Net网络用于泡沫图像分割.该算法以U-Net网络作为主干网络,使用Inception模块替换第一卷积池化层来提取泡沫图像的多尺度、多层次浅层特征信息;引入金字塔池化模块,通过对不同尺度的特征图求和来提升分割效果;并对自注意力门控单元进行改进,使注意力单元更适合于浮选泡沫图像的分割,强化深层特征的重要性并对不同尺寸的泡沫边界进行强化学习.研究结果表明:本文所提出算法的Jaccard系数为91.73%,Dice系数为95.66%.与同类其他分割算法结果相比,Jaccard系数及Dice系数分别提高了1.59%、0.88%.该模型能够较好地对锌浮选泡沫图像进行分割,解决欠分割与过分割的问题,为后续的泡沫特征提取奠定基础.此外,该方法检测时间和模型参数少,具备可以部署在工业现场计算机的能力,有一定的实际应用价值. 展开更多
关键词 泡沫浮选 泡沫图像分割 U-Net Inception模块 增强注意力机制
下载PDF
基于改进Faster R-CNN的纸病检测算法 被引量:4
9
作者 汤伟 王锦韫 张龙 《包装工程》 CAS 北大核心 2023年第21期260-266,共7页
目的达到纸病检测中能够充分提取纸病特征、提高检测精度、降低小目标漏检率的目标。方法基于Faster R-CNN的检测算法进行改进,主要改进的做法是利用深度残差网络ResNet-50替换原模型的骨干特征提取网络VGG16,以保留更多的纸病特征信息... 目的达到纸病检测中能够充分提取纸病特征、提高检测精度、降低小目标漏检率的目标。方法基于Faster R-CNN的检测算法进行改进,主要改进的做法是利用深度残差网络ResNet-50替换原模型的骨干特征提取网络VGG16,以保留更多的纸病特征信息,增强特征网络对纸张缺陷的提取能力;在算法中添加空间和通道的双重注意力机制CBAM,用来提高纸病检测精度;将ROI-Pooling替换为ROI-Align,增强网络的泛化能力。结果实验结果表明,改进后的算法平均精度达到98%,较原算法平均精度提升了9%。结论改进后的算法能够充分提取纸病特征信息,有效提高了纸病的检测精度,以及提高了小目标纸病的检测率,降低了错漏检率。 展开更多
关键词 纸病检测 faster R-CNN ResNet-50 卷积块双重注意力机制 ROI-Align
下载PDF
ANC: Attention Network for COVID-19 Explainable Diagnosis Based on Convolutional Block Attention Module 被引量:9
10
作者 Yudong Zhang Xin Zhang Weiguo Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第6期1037-1058,共22页
Aim: To diagnose COVID-19 more efficiently and more correctly, this study proposed a novel attention network forCOVID-19 (ANC). Methods: Two datasets were used in this study. An 18-way data augmentation was proposed t... Aim: To diagnose COVID-19 more efficiently and more correctly, this study proposed a novel attention network forCOVID-19 (ANC). Methods: Two datasets were used in this study. An 18-way data augmentation was proposed toavoid overfitting. Then, convolutional block attention module (CBAM) was integrated to our model, the structureof which is fine-tuned. Finally, Grad-CAM was used to provide an explainable diagnosis. Results: The accuracyof our ANC methods on two datasets are 96.32% ± 1.06%, and 96.00% ± 1.03%, respectively. Conclusions: Thisproposed ANC method is superior to 9 state-of-the-art approaches. 展开更多
关键词 Deep learning convolutional block attention module attention mechanism COVID-19 explainable diagnosis
下载PDF
MobileNet network optimization based on convolutional block attention module 被引量:3
11
作者 ZHAO Shuxu MEN Shiyao YUAN Lin 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第2期225-234,共10页
Deep learning technology is widely used in computer vision.Generally,a large amount of data is used to train the model weights in deep learning,so as to obtain a model with higher accuracy.However,massive data and com... Deep learning technology is widely used in computer vision.Generally,a large amount of data is used to train the model weights in deep learning,so as to obtain a model with higher accuracy.However,massive data and complex model structures require more calculating resources.Since people generally can only carry and use mobile and portable devices in application scenarios,neural networks have limitations in terms of calculating resources,size and power consumption.Therefore,the efficient lightweight model MobileNet is used as the basic network in this study for optimization.First,the accuracy of the MobileNet model is improved by adding methods such as the convolutional block attention module(CBAM)and expansion convolution.Then,the MobileNet model is compressed by using pruning and weight quantization algorithms based on weight size.Afterwards,methods such as Python crawlers and data augmentation are employed to create a garbage classification data set.Based on the above model optimization strategy,the garbage classification mobile terminal application is deployed on mobile phones and raspberry pies,realizing completing the garbage classification task more conveniently. 展开更多
关键词 MobileNet convolutional block attention module(CBAM) model pruning and quantization edge machine learning
下载PDF
Bilateral U-Net semantic segmentation with spatial attention mechanism 被引量:2
12
作者 Guangzhe Zhao Yimeng Zhang +1 位作者 Maoning Ge Min Yu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第2期297-307,共11页
Aiming at the problem that the existing models have a poor segmentation effect on imbalanced data sets with small-scale samples,a bilateral U-Net network model with a spatial attention mechanism is designed.The model ... Aiming at the problem that the existing models have a poor segmentation effect on imbalanced data sets with small-scale samples,a bilateral U-Net network model with a spatial attention mechanism is designed.The model uses the lightweight MobileNetV2 as the backbone network for feature hierarchical extraction and proposes an Attentive Pyramid Spatial Attention(APSA)module compared to the Attenuated Spatial Pyramid module,which can increase the receptive field and enhance the information,and finally adds the context fusion prediction branch that fuses high-semantic and low-semantic prediction results,and the model effectively improves the segmentation accuracy of small data sets.The experimental results on the CamVid data set show that compared with some existing semantic segmentation networks,the algorithm has a better segmentation effect and segmentation accuracy,and its mIOU reaches 75.85%.Moreover,to verify the generality of the model and the effectiveness of the APSA module,experiments were conducted on the VOC 2012 data set,and the APSA module improved mIOU by about 12.2%. 展开更多
关键词 attention mechanism receptive field semantic fusion semantic segmentation spatial attention module U-Net
下载PDF
An Efficient Indoor Localization Based on Deep Attention Learning Model 被引量:1
13
作者 Amr Abozeid Ahmed I.Taloba +3 位作者 Rasha M.Abd El-Aziz Alhanoof Faiz Alwaghid Mostafa Salem Ahmed Elhadad 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期2637-2650,共14页
Indoor localization methods can help many sectors,such as healthcare centers,smart homes,museums,warehouses,and retail malls,improve their service areas.As a result,it is crucial to look for low-cost methods that can ... Indoor localization methods can help many sectors,such as healthcare centers,smart homes,museums,warehouses,and retail malls,improve their service areas.As a result,it is crucial to look for low-cost methods that can provide exact localization in indoor locations.In this context,imagebased localization methods can play an important role in estimating both the position and the orientation of cameras regarding an object.Image-based localization faces many issues,such as image scale and rotation variance.Also,image-based localization’s accuracy and speed(latency)are two critical factors.This paper proposes an efficient 6-DoF deep-learning model for image-based localization.This model incorporates the channel attention module and the Scale PyramidModule(SPM).It not only enhances accuracy but also ensures the model’s real-time performance.In complex scenes,a channel attention module is employed to distinguish between the textures of the foregrounds and backgrounds.Our model adapted an SPM,a feature pyramid module for dealing with image scale and rotation variance issues.Furthermore,the proposed model employs two regressions(two fully connected layers),one for position and the other for orientation,which increases outcome accuracy.Experiments on standard indoor and outdoor datasets show that the proposed model has a significantly lower Mean Squared Error(MSE)for both position and orientation.On the indoor 7-Scenes dataset,the MSE for the position is reduced to 0.19 m and 6.25°for the orientation.Furthermore,on the outdoor Cambridge landmarks dataset,the MSE for the position is reduced to 0.63 m and 2.03°for the orientation.According to the findings,the proposed approach is superior and more successful than the baseline methods. 展开更多
关键词 Image-based localization computer vision deep learning attention module VGG-16
下载PDF
Single Image Deraining Using Dual Branch Network Based on Attention Mechanism for IoT 被引量:1
14
作者 Di Wang Bingcai Wei Liye Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1989-2000,共12页
Extracting useful details from images is essential for the Internet of Things project.However,in real life,various external environments,such as badweather conditions,will cause the occlusion of key target information... Extracting useful details from images is essential for the Internet of Things project.However,in real life,various external environments,such as badweather conditions,will cause the occlusion of key target information and image distortion,resulting in difficulties and obstacles to the extraction of key information,affecting the judgment of the real situation in the process of the Internet of Things,and causing system decision-making errors and accidents.In this paper,we mainly solve the problem of rain on the image occlusion,remove the rain grain in the image,and get a clear image without rain.Therefore,the single image deraining algorithm is studied,and a dual-branch network structure based on the attention module and convolutional neural network(CNN)module is proposed to accomplish the task of rain removal.In order to complete the rain removal of a single image with high quality,we apply the spatial attention module,channel attention module and CNN module to the network structure,and build the network using the coder-decoder structure.In the experiment,with the structural similarity(SSIM)and the peak signal-to-noise ratio(PSNR)as evaluation indexes,the training and testing results on the rain removal dataset show that the proposed structure has a good effect on the single image deraining task. 展开更多
关键词 Internet of Things image deraining dual-branch network structure attention module convolutional neural network
下载PDF
一种基于FAS-Transformer的人脸防伪方法
15
作者 魏鑫 马宏斌 王英丽 《黑龙江大学自然科学学报》 CAS 2023年第3期369-378,共10页
针对人脸防伪方法在应对不同表征攻击和未知表征攻击时,普遍存在有效性和泛化性差的问题,提出了一种人脸防伪方法。将在自然语言处理领域应用的注意力机制引入人脸防伪任务,获取特征之间的成对相似性关系,提升方法的有效性和泛化性。针... 针对人脸防伪方法在应对不同表征攻击和未知表征攻击时,普遍存在有效性和泛化性差的问题,提出了一种人脸防伪方法。将在自然语言处理领域应用的注意力机制引入人脸防伪任务,获取特征之间的成对相似性关系,提升方法的有效性和泛化性。针对人脸防伪模型在训练过程中数据量不足的问题,引入迁移学习的思想,通过对FAS-Transformer预训练模型进行改进,使其快速地部署到二分类任务中。为验证所提出方法的有效性,分别设计了集内测试实验和集间测试实验,与主流方法进行了对比。实验结果表明,本方法获得了预期效果。 展开更多
关键词 注意力机制 人脸防伪 迁移学习 faS-Transformer
下载PDF
基于Inception-LSTM-Attention的冷水机组传感器偏差故障诊断方法 被引量:4
16
作者 李冬辉 刘功尚 高龙 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第1期102-112,共11页
为提升传统的冷水机组传感器偏差故障诊断方法的特征提取效果及故障诊断准确率,提出一种基于Inception模块和融合注意力机制(Attention)的长短时记忆网络(LSTM)相结合(Inception-LSTM-Attention)的冷水机组传感器偏差故障诊断方法。该... 为提升传统的冷水机组传感器偏差故障诊断方法的特征提取效果及故障诊断准确率,提出一种基于Inception模块和融合注意力机制(Attention)的长短时记忆网络(LSTM)相结合(Inception-LSTM-Attention)的冷水机组传感器偏差故障诊断方法。该方法通过Inception模块从冷水机组传感器时序数据中提取多尺度的实时特征,并利用LSTM学习传感器时序数据中存在的时间相关关系;通过在LSTM中融合注意力机制来保证其最终的输出综合了各个时间节点的输出,提升重要信息的影响程度,最大化保留时序数据的全局信息。同时,设计跳跃连接支路缓解网络中存在的梯度消失问题。最后,使用冷水机组实验平台的传感器实测数据对所提方法进行实验验证。研究结果表明:本文方法对于压力类、温度类各传感器的偏差故障诊断平均准确率均在94%以上;对于各传感器中较小偏差故障的故障诊断准确率均在87.6%以上;与主成分分析、卷积神经网络、Inception以及Inception-LSTM这4种方法相比,Inception-LSTM-Attention模型的传感器偏差故障诊断准确率更高。 展开更多
关键词 冷水机组 传感器 故障诊断 Inception模块 长短时记忆网络 注意力机制
下载PDF
基于改进FairMOT的铁路周界入侵检测方法 被引量:1
17
作者 胡昊 史天运 杨文 《中国铁道科学》 EI CAS CSCD 北大核心 2023年第5期222-232,共11页
针对铁路综合监控视频中不同远近行人成像面积差异较大、自然环境变化产生干扰等因素造成的检测难题,提出一种改进FairMOT框架的周界入侵检测方法。首先,针对监控视频中不同远近的行人,通过在FairMOT框架中引入感受野模块,丰富不同成像... 针对铁路综合监控视频中不同远近行人成像面积差异较大、自然环境变化产生干扰等因素造成的检测难题,提出一种改进FairMOT框架的周界入侵检测方法。首先,针对监控视频中不同远近的行人,通过在FairMOT框架中引入感受野模块,丰富不同成像大小行人检测所需的感受野,以更好地提取不同尺度特征信息;其次,针对夜晚时段方法检测性能较低的问题,在编码解码网络后融合空间注意力模块,强化夜间前景行人关键特征,同时优化目标跟踪和判断流程,实现稳定检测;然后,针对缺乏大量学习样本的问题,使用行人检测跟踪数据集与铁路真实数据集混合增强训练,提高方法在全天候检测中的泛化性和鲁棒性;最后,在MOT17数据集和铁路真实数据集上,对改进FairMOT检测方法与CenterTrack,Bytetrack等方法进行对比试验。结果表明:提出的改进FairMOT检测方法在白天和夜晚对不同大小目标检测中,均取得了最高的准确率和召回率调和均值,检测性能最好;方法检测速率为25.2帧·s^(-1),能够满足实时检测要求。改进的FairMOT检测方法可以更有效地应用于实际铁路周界入侵检测场景。 展开更多
关键词 铁路运输 周界入侵检测 感受野模块 空间注意力
下载PDF
基于改进Faster R-CNN绪下茧形态识别与计数方法的研究 被引量:2
18
作者 杨青青 邵铁锋 +1 位作者 孙卫红 梁曼 《中国计量大学学报》 2023年第2期224-230,240,共8页
目的:为解决解舒试验过程中绪下茧人工识别与计数劳动强度大等问题,提出一种基于改进Faster R-CNN绪下茧形态识别与计数方法。方法:首先,根据解舒试验过程中绪下茧呈现的不同形态,将绪下茧分为新茧、中茧、薄茧3种。采集绪下茧图像,构... 目的:为解决解舒试验过程中绪下茧人工识别与计数劳动强度大等问题,提出一种基于改进Faster R-CNN绪下茧形态识别与计数方法。方法:首先,根据解舒试验过程中绪下茧呈现的不同形态,将绪下茧分为新茧、中茧、薄茧3种。采集绪下茧图像,构建数据集,使用ResNet50残差网络作为Faster R-CNN的特征提取网络,提取3种绪下茧形态图像特征;其次,调整区域建议网络(RPN)中锚点(Anchor)的比例,使检测结果中的目标矩形框更加精确;再次,将SENet注意力模块加入到特征提取网络中;最后,在形态识别的基础上,统计绪下茧数量。结果:改进算法训练的模型对绪下茧的3种形态的平均准确率达到了86.37%,召回率达到了90.3%。检测的平均速度0.17 s/幅。结论:该算法满足绪下茧形态识别与计数的要求。 展开更多
关键词 解舒试验 faster R-CNN算法 SENet注意力模块 绪下茧识别与计数
下载PDF
改进的Faster-RCNN算法在聚乙烯管接头内部缺陷检测中的应用 被引量:1
19
作者 彭伊娟 王振超 张秋菊 《应用声学》 CSCD 北大核心 2023年第5期984-992,共9页
超声相控阵技术是目前聚乙烯管道热熔接头内部缺陷检测的一种主流方法。提出了基于注意力机制的改进Faster-RCNN目标检测网络用于超声相控阵D扫图聚乙烯管接头内部缺陷检测。针对聚乙烯管道热熔接头内部超声相控阵D扫图小缺陷较多、特... 超声相控阵技术是目前聚乙烯管道热熔接头内部缺陷检测的一种主流方法。提出了基于注意力机制的改进Faster-RCNN目标检测网络用于超声相控阵D扫图聚乙烯管接头内部缺陷检测。针对聚乙烯管道热熔接头内部超声相控阵D扫图小缺陷较多、特征信息容易丢失的问题,将残差网络(ResNet50)与特征金字塔网络(FPN)相结合作为骨干网络,并引入卷积注意力模块(CBAM)自适应细化特征。将SSD网络框架和Faster-RCNN网络框架用于模型训练和测试,使用VGG16、ResNet50、ResNet50+FPN、ACBM+ResNet50+FPN作为骨干网络依次对超声相控阵聚乙烯管道热熔对接接头内部缺陷样本进行训练对比。结果表明,改进的Faster-RCNN网络模型在聚乙烯管接头内部缺陷检测和分类方面有明显改进,对小缺陷的检测性能有了显著的提高。 展开更多
关键词 缺陷检测 超声相控阵 卷积注意力模块 残差网络 特征金字塔
下载PDF
Gear Pitting Measurement by Multi-Scale Splicing Attention U-Net
20
作者 Yi Qin Dejun Xi +1 位作者 Weiwei Chen Yi Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期140-154,共15页
The judgment of gear failure is based on the pitting area ratio of gear.Traditional gear pitting calculation method mainly rely on manual visual inspection.This method is greatly affected by human factors,and is great... The judgment of gear failure is based on the pitting area ratio of gear.Traditional gear pitting calculation method mainly rely on manual visual inspection.This method is greatly affected by human factors,and is greatly affected by the working experience,training degree and fatigue degree of the detection personnel,so the detection results may be biased.The non-contact computer vision measurement can carry out non-destructive testing and monitoring under the working condition of the machine,and has high detection accuracy.To improve the measurement accuracy of gear pitting,a novel multi-scale splicing attention U-Net(MSSA U-Net)is explored in this study.An image splicing module is first proposed for concatenating the output feature maps of multiple convolutional layers into a splicing feature map with more semantic information.Then,an attention module is applied to select the key features of the splicing feature map.Given that MSSA U-Net adequately uses multi-scale semantic features,it has better segmentation performance on irregular small objects than U-Net and attention U-Net.On the basis of the designed visual detection platform and MSSA U-Net,a methodology for measuring the area ratio of gear pitting is proposed.With three datasets,experimental results show that MSSA U-Net is superior to existing typical image segmentation methods and can accurately segment different levels of pitting due to its strong segmentation ability.Therefore,the proposed methodology can be effectively applied in measuring the pitting area ratio and determining the level of gear pitting. 展开更多
关键词 Gear pitting Image segmentation attention module Computer vision Quantitative detection
下载PDF
上一页 1 2 52 下一页 到第
使用帮助 返回顶部