Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adver...Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adversarial learning idea.The goal of GANs is to estimate the potential distribution of real data samples and generate new samples from that distribution.Since their initiation, GANs have been widely studied due to their enormous prospect for applications, including image and vision computing, speech and language processing, etc. In this review paper, we summarize the state of the art of GANs and look into the future. Firstly, we survey GANs' proposal background,theoretic and implementation models, and application fields.Then, we discuss GANs' advantages and disadvantages, and their development trends. In particular, we investigate the relation between GANs and parallel intelligence,with the conclusion that GANs have a great potential in parallel systems research in terms of virtual-real interaction and integration. Clearly, GANs can provide substantial algorithmic support for parallel intelligence.展开更多
Neutron radiography is a crucial nondestructive testing technology widely used in the aerospace,military,and nuclear industries.However,because of the physical limitations of neutron sources and collimators,the result...Neutron radiography is a crucial nondestructive testing technology widely used in the aerospace,military,and nuclear industries.However,because of the physical limitations of neutron sources and collimators,the resulting neutron radiographic images inevitably exhibit multiple distortions,including noise,geometric unsharpness,and white spots.Furthermore,these distortions are particularly significant in compact neutron radiography systems with low neutron fluxes.Therefore,in this study,we devised a multi-distortion suppression network that employs a modified generative adversarial network to improve the quality of degraded neutron radiographic images.Real neutron radiographic image datasets with various types and levels of distortion were built for the first time as multi-distortion suppression datasets.Thereafter,the coordinate attention mechanism was incorporated into the backbone network to augment the capability of the proposed network to learn the abstract relationship between ideally clear and degraded images.Extensive experiments were performed;the results show that the proposed method can effectively suppress multiple distortions in real neutron radiographic images and achieve state-of-theart perceptual visual quality,thus demonstrating its application potential in neutron radiography.展开更多
Generative adversarial networks(GANs) have become a competitive method among computer vision tasks. There have been many studies devoted to utilizing generative network to do generative tasks, such as images synthesis...Generative adversarial networks(GANs) have become a competitive method among computer vision tasks. There have been many studies devoted to utilizing generative network to do generative tasks, such as images synthesis. In this paper, a semi-supervised learning scheme is incorporated with generative adversarial network on image classification tasks to improve the image classification accuracy. Two applications of GANs are mainly focused on: semi-supervised learning and generation of images which can be as real as possible. The whole process is divided into two sections. First, only a small part of the dataset is utilized as labeled training data. And then a huge amount of samples generated from the generator is added into the training samples to improve the generalization of the discriminator. Through the semi-supervised learning scheme, full use of the unlabeled data is made which may contain potential information. Thus, the classification accuracy of the discriminator can be improved. Experimental results demonstrate the improvement of the classification accuracy of discriminator among different datasets, such as MNIST, CIFAR-10.展开更多
It is important to understand how ballistic materials respond to impact from projectiles such that informed decisions can be made in the design process of protective armour systems. Ballistic testing is a standards-ba...It is important to understand how ballistic materials respond to impact from projectiles such that informed decisions can be made in the design process of protective armour systems. Ballistic testing is a standards-based process where materials are tested to determine whether they meet protection, safety and performance criteria. For the V50ballistic test, projectiles are fired at different velocities to determine a key design parameter known as the ballistic limit velocity(BLV), the velocity above which projectiles perforate the target. These tests, however, are destructive by nature and as such there can be considerable associated costs, especially when studying complex armour materials and systems. This study proposes a unique solution to the problem using a recent class of machine learning system known as the Generative Adversarial Network(GAN). The GAN can be used to generate new ballistic samples as opposed to performing additional destructive experiments. A GAN network architecture is tested and trained on three different ballistic data sets, and their performance is compared. The trained networks were able to successfully produce ballistic curves with an overall RMSE of between 10 and 20 % and predicted the V50BLV in each case with an error of less than 5 %. The results demonstrate that it is possible to train generative networks on a limited number of ballistic samples and use the trained network to generate many new samples representative of the data that it was trained on. The paper spotlights the benefits that generative networks can bring to ballistic applications and provides an alternative to expensive testing during the early stages of the design process.展开更多
Recently,the evolution of Generative Adversarial Networks(GANs)has embarked on a journey of revolutionizing the field of artificial and computational intelligence.To improve the generating ability of GANs,various loss...Recently,the evolution of Generative Adversarial Networks(GANs)has embarked on a journey of revolutionizing the field of artificial and computational intelligence.To improve the generating ability of GANs,various loss functions are introduced to measure the degree of similarity between the samples generated by the generator and the real data samples,and the effectiveness of the loss functions in improving the generating ability of GANs.In this paper,we present a detailed survey for the loss functions used in GANs,and provide a critical analysis on the pros and cons of these loss functions.First,the basic theory of GANs along with the training mechanism are introduced.Then,the most commonly used loss functions in GANs are introduced and analyzed.Third,the experimental analyses and comparison of these loss functions are presented in different GAN architectures.Finally,several suggestions on choosing suitable loss functions for image synthesis tasks are given.展开更多
In this paper,we propose a hybrid model aiming to map the input noise vector to the label of the generated image by the generative adversarial network(GAN).This model mainly consists of a pre-trained deep convolution ...In this paper,we propose a hybrid model aiming to map the input noise vector to the label of the generated image by the generative adversarial network(GAN).This model mainly consists of a pre-trained deep convolution generative adversarial network(DCGAN)and a classifier.By using the model,we visualize the distribution of two-dimensional input noise,leading to a specific type of the generated image after each training epoch of GAN.The visualization reveals the distribution feature of the input noise vector and the performance of the generator.With this feature,we try to build a guided generator(GG)with the ability to produce a fake image we need.Two methods are proposed to build GG.One is the most significant noise(MSN)method,and the other utilizes labeled noise.The MSN method can generate images precisely but with less variations.In contrast,the labeled noise method has more variations but is slightly less stable.Finally,we propose a criterion to measure the performance of the generator,which can be used as a loss function to effectively train the network.展开更多
工业数据由于技术故障和人为因素通常导致数据异常,现有基于约束的方法因约束阈值设置的过于宽松或严格会导致修复错误,基于统计的方法因平滑修复机制导致对时间步长较远的异常值修复准确度较低.针对上述问题,提出了基于奖励机制的最小...工业数据由于技术故障和人为因素通常导致数据异常,现有基于约束的方法因约束阈值设置的过于宽松或严格会导致修复错误,基于统计的方法因平滑修复机制导致对时间步长较远的异常值修复准确度较低.针对上述问题,提出了基于奖励机制的最小迭代修复和改进WGAN混合模型的时序数据修复方法.首先,在预处理阶段,保留异常数据,进行信息标注等处理,从而充分挖掘异常值与真实值之间的特征约束.其次,在噪声模块提出了近邻参数裁剪规则,用于修正最小迭代修复公式生成的噪声向量.将其传递至模拟分布模块的生成器中,同时设计了一个动态时间注意力网络层,用于提取时序特征权重并与门控循环单元串联组合捕捉不同步长的特征依赖,并引入递归多步预测原理共同提升模型的表达能力;在判别器中设计了Abnormal and Truth奖励机制和Weighted Mean Square Error损失函数共同反向优化生成器修复数据的细节和质量.最后,在公开数据集和真实数据集上的实验结果表明,该方法的修复准确度与模型稳定性显著优于现有方法.展开更多
Sampling-based path planning is a popular methodology for robot path planning.With a uniform sampling strategy to explore the state space,a feasible path can be found without the complex geometric modeling of the conf...Sampling-based path planning is a popular methodology for robot path planning.With a uniform sampling strategy to explore the state space,a feasible path can be found without the complex geometric modeling of the configuration space.However,the quality of the initial solution is not guaranteed,and the convergence speed to the optimal solution is slow.In this paper,we present a novel image-based path planning algorithm to overcome these limitations.Specifically,a generative adversarial network(GAN)is designed to take the environment map(denoted as RGB image)as the input without other preprocessing works.The output is also an RGB image where the promising region(where a feasible path probably exists)is segmented.This promising region is utilized as a heuristic to achieve non-uniform sampling for the path planner.We conduct a number of simulation experiments to validate the effectiveness of the proposed method,and the results demonstrate that our method performs much better in terms of the quality of the initial solution and the convergence speed to the optimal solution.Furthermore,apart from the environments similar to the training set,our method also works well on the environments which are very different from the training set.展开更多
Haze is a very common phenomenon that degrades or reduces visibility. It causes various problems where high-quality images are required such as traffic and security monitoring. So haze removal from scenes is an immedi...Haze is a very common phenomenon that degrades or reduces visibility. It causes various problems where high-quality images are required such as traffic and security monitoring. So haze removal from scenes is an immediate demand for clear vision. Recently, in addition to the conventional dehazing mechanisms, different types of deep generative adversarial networks (GAN) are applied to suppress the noise and improve the dehazing performance. But it is unclear how these algorithms would perform on hazy images acquired “in the wild” and how we could gauge the progress in the field. To bridge this gap, this presents a comprehensive study on three single image dehazing state-of-the-art GAN models, such as AOD-Net, cGAN, and DHSGAN. We have experimented using benchmark dataset consisting of both synthetic and real-world hazy images. The obtained results are evaluated both quantitatively and qualitatively. Among these techniques, the DHSGAN gives the best performance.展开更多
With aperture synthesis(AS)technique,a number of small antennas can be assembled to form a large telescope whose spatial resolution is determined by the distance of two farthest antennas instead of the diameter of a s...With aperture synthesis(AS)technique,a number of small antennas can be assembled to form a large telescope whose spatial resolution is determined by the distance of two farthest antennas instead of the diameter of a single-dish antenna.In contrast from a direct imaging system,an AS telescope captures the Fourier coefficients of a spatial object,and then implement inverse Fourier transform to reconstruct the spatial image.Due to the limited number of antennas,the Fourier coefficients are extremely sparse in practice,resulting in a very blurry image.To remove/reduce blur,“CLEAN”deconvolution has been widely used in the literature.However,it was initially designed for a point source.For an extended source,like the Sun,its efficiency is unsatisfactory.In this study,a deep neural network,referring to Generative Adversarial Network(GAN),is proposed for solar image deconvolution.The experimental results demonstrate that the proposed model is markedly better than traditional CLEAN on solar images.The main purpose of this work is visual inspection instead of quantitative scientific computation.We believe that this will also help scientists to better understand solar phenomena with high quality images.展开更多
Background Owing to the limitations of the working principle of three-dimensional(3D) scanning equipment, the point clouds obtained by 3D scanning are usually sparse and unevenly distributed. Method In this paper, we ...Background Owing to the limitations of the working principle of three-dimensional(3D) scanning equipment, the point clouds obtained by 3D scanning are usually sparse and unevenly distributed. Method In this paper, we propose a new generative adversarial network(GAN) that extends PU-GAN for upsampling of point clouds. Its core architecture aims to replace the traditional self-attention(SA) module with an implicit Laplacian offset attention(OA) module and to aggregate the adjacency features using a multiscale offset attention(MSOA)module, which adaptively adjusts the receptive field to learn various structural features. Finally, residual links are added to create our residual multiscale offset attention(RMSOA) module, which utilizes multiscale structural relationships to generate finer details. Result The results of several experiments show that our method outperforms existing methods and is highly robust.展开更多
基金supported by the National Natural Science Foundation of China(61533019,71232006,91520301)
文摘Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adversarial learning idea.The goal of GANs is to estimate the potential distribution of real data samples and generate new samples from that distribution.Since their initiation, GANs have been widely studied due to their enormous prospect for applications, including image and vision computing, speech and language processing, etc. In this review paper, we summarize the state of the art of GANs and look into the future. Firstly, we survey GANs' proposal background,theoretic and implementation models, and application fields.Then, we discuss GANs' advantages and disadvantages, and their development trends. In particular, we investigate the relation between GANs and parallel intelligence,with the conclusion that GANs have a great potential in parallel systems research in terms of virtual-real interaction and integration. Clearly, GANs can provide substantial algorithmic support for parallel intelligence.
基金supported by National Natural Science Foundation of China(Nos.11905028,12105040)Scientific Research Project of Education Department of Jilin Province(No.JJKH20231294KJ)。
文摘Neutron radiography is a crucial nondestructive testing technology widely used in the aerospace,military,and nuclear industries.However,because of the physical limitations of neutron sources and collimators,the resulting neutron radiographic images inevitably exhibit multiple distortions,including noise,geometric unsharpness,and white spots.Furthermore,these distortions are particularly significant in compact neutron radiography systems with low neutron fluxes.Therefore,in this study,we devised a multi-distortion suppression network that employs a modified generative adversarial network to improve the quality of degraded neutron radiographic images.Real neutron radiographic image datasets with various types and levels of distortion were built for the first time as multi-distortion suppression datasets.Thereafter,the coordinate attention mechanism was incorporated into the backbone network to augment the capability of the proposed network to learn the abstract relationship between ideally clear and degraded images.Extensive experiments were performed;the results show that the proposed method can effectively suppress multiple distortions in real neutron radiographic images and achieve state-of-theart perceptual visual quality,thus demonstrating its application potential in neutron radiography.
基金Supported by the National Natural Science Foundation of China(No.61501457)National Key Technology R&D Program(No.2015BAK21B00)
文摘Generative adversarial networks(GANs) have become a competitive method among computer vision tasks. There have been many studies devoted to utilizing generative network to do generative tasks, such as images synthesis. In this paper, a semi-supervised learning scheme is incorporated with generative adversarial network on image classification tasks to improve the image classification accuracy. Two applications of GANs are mainly focused on: semi-supervised learning and generation of images which can be as real as possible. The whole process is divided into two sections. First, only a small part of the dataset is utilized as labeled training data. And then a huge amount of samples generated from the generator is added into the training samples to improve the generalization of the discriminator. Through the semi-supervised learning scheme, full use of the unlabeled data is made which may contain potential information. Thus, the classification accuracy of the discriminator can be improved. Experimental results demonstrate the improvement of the classification accuracy of discriminator among different datasets, such as MNIST, CIFAR-10.
基金supported by the Engineering and Physical Sciences Research Council [grant number: EP/N509644/1]。
文摘It is important to understand how ballistic materials respond to impact from projectiles such that informed decisions can be made in the design process of protective armour systems. Ballistic testing is a standards-based process where materials are tested to determine whether they meet protection, safety and performance criteria. For the V50ballistic test, projectiles are fired at different velocities to determine a key design parameter known as the ballistic limit velocity(BLV), the velocity above which projectiles perforate the target. These tests, however, are destructive by nature and as such there can be considerable associated costs, especially when studying complex armour materials and systems. This study proposes a unique solution to the problem using a recent class of machine learning system known as the Generative Adversarial Network(GAN). The GAN can be used to generate new ballistic samples as opposed to performing additional destructive experiments. A GAN network architecture is tested and trained on three different ballistic data sets, and their performance is compared. The trained networks were able to successfully produce ballistic curves with an overall RMSE of between 10 and 20 % and predicted the V50BLV in each case with an error of less than 5 %. The results demonstrate that it is possible to train generative networks on a limited number of ballistic samples and use the trained network to generate many new samples representative of the data that it was trained on. The paper spotlights the benefits that generative networks can bring to ballistic applications and provides an alternative to expensive testing during the early stages of the design process.
文摘Recently,the evolution of Generative Adversarial Networks(GANs)has embarked on a journey of revolutionizing the field of artificial and computational intelligence.To improve the generating ability of GANs,various loss functions are introduced to measure the degree of similarity between the samples generated by the generator and the real data samples,and the effectiveness of the loss functions in improving the generating ability of GANs.In this paper,we present a detailed survey for the loss functions used in GANs,and provide a critical analysis on the pros and cons of these loss functions.First,the basic theory of GANs along with the training mechanism are introduced.Then,the most commonly used loss functions in GANs are introduced and analyzed.Third,the experimental analyses and comparison of these loss functions are presented in different GAN architectures.Finally,several suggestions on choosing suitable loss functions for image synthesis tasks are given.
基金supported by Shenzhen Science and Technology Innovation Committee under Grants No. JCYJ20170306170559215 and No. JCYJ20180302153918689。
文摘In this paper,we propose a hybrid model aiming to map the input noise vector to the label of the generated image by the generative adversarial network(GAN).This model mainly consists of a pre-trained deep convolution generative adversarial network(DCGAN)and a classifier.By using the model,we visualize the distribution of two-dimensional input noise,leading to a specific type of the generated image after each training epoch of GAN.The visualization reveals the distribution feature of the input noise vector and the performance of the generator.With this feature,we try to build a guided generator(GG)with the ability to produce a fake image we need.Two methods are proposed to build GG.One is the most significant noise(MSN)method,and the other utilizes labeled noise.The MSN method can generate images precisely but with less variations.In contrast,the labeled noise method has more variations but is slightly less stable.Finally,we propose a criterion to measure the performance of the generator,which can be used as a loss function to effectively train the network.
文摘工业数据由于技术故障和人为因素通常导致数据异常,现有基于约束的方法因约束阈值设置的过于宽松或严格会导致修复错误,基于统计的方法因平滑修复机制导致对时间步长较远的异常值修复准确度较低.针对上述问题,提出了基于奖励机制的最小迭代修复和改进WGAN混合模型的时序数据修复方法.首先,在预处理阶段,保留异常数据,进行信息标注等处理,从而充分挖掘异常值与真实值之间的特征约束.其次,在噪声模块提出了近邻参数裁剪规则,用于修正最小迭代修复公式生成的噪声向量.将其传递至模拟分布模块的生成器中,同时设计了一个动态时间注意力网络层,用于提取时序特征权重并与门控循环单元串联组合捕捉不同步长的特征依赖,并引入递归多步预测原理共同提升模型的表达能力;在判别器中设计了Abnormal and Truth奖励机制和Weighted Mean Square Error损失函数共同反向优化生成器修复数据的细节和质量.最后,在公开数据集和真实数据集上的实验结果表明,该方法的修复准确度与模型稳定性显著优于现有方法.
基金This work was partially supported by National Key R&D Program of China(2019YFB1312400)Shenzhen Key Laboratory of Robotics Perception and Intelligence(ZDSYS20200810171800001)+1 种基金Hong Kong RGC GRF(14200618)Hong Kong RGC CRF(C4063-18G).
文摘Sampling-based path planning is a popular methodology for robot path planning.With a uniform sampling strategy to explore the state space,a feasible path can be found without the complex geometric modeling of the configuration space.However,the quality of the initial solution is not guaranteed,and the convergence speed to the optimal solution is slow.In this paper,we present a novel image-based path planning algorithm to overcome these limitations.Specifically,a generative adversarial network(GAN)is designed to take the environment map(denoted as RGB image)as the input without other preprocessing works.The output is also an RGB image where the promising region(where a feasible path probably exists)is segmented.This promising region is utilized as a heuristic to achieve non-uniform sampling for the path planner.We conduct a number of simulation experiments to validate the effectiveness of the proposed method,and the results demonstrate that our method performs much better in terms of the quality of the initial solution and the convergence speed to the optimal solution.Furthermore,apart from the environments similar to the training set,our method also works well on the environments which are very different from the training set.
文摘Haze is a very common phenomenon that degrades or reduces visibility. It causes various problems where high-quality images are required such as traffic and security monitoring. So haze removal from scenes is an immediate demand for clear vision. Recently, in addition to the conventional dehazing mechanisms, different types of deep generative adversarial networks (GAN) are applied to suppress the noise and improve the dehazing performance. But it is unclear how these algorithms would perform on hazy images acquired “in the wild” and how we could gauge the progress in the field. To bridge this gap, this presents a comprehensive study on three single image dehazing state-of-the-art GAN models, such as AOD-Net, cGAN, and DHSGAN. We have experimented using benchmark dataset consisting of both synthetic and real-world hazy images. The obtained results are evaluated both quantitatively and qualitatively. Among these techniques, the DHSGAN gives the best performance.
基金the National Natural Science Foundation of China(NSFC)(Grant Nos.61572461,61811530282,61872429,11790301 and 11790305).
文摘With aperture synthesis(AS)technique,a number of small antennas can be assembled to form a large telescope whose spatial resolution is determined by the distance of two farthest antennas instead of the diameter of a single-dish antenna.In contrast from a direct imaging system,an AS telescope captures the Fourier coefficients of a spatial object,and then implement inverse Fourier transform to reconstruct the spatial image.Due to the limited number of antennas,the Fourier coefficients are extremely sparse in practice,resulting in a very blurry image.To remove/reduce blur,“CLEAN”deconvolution has been widely used in the literature.However,it was initially designed for a point source.For an extended source,like the Sun,its efficiency is unsatisfactory.In this study,a deep neural network,referring to Generative Adversarial Network(GAN),is proposed for solar image deconvolution.The experimental results demonstrate that the proposed model is markedly better than traditional CLEAN on solar images.The main purpose of this work is visual inspection instead of quantitative scientific computation.We believe that this will also help scientists to better understand solar phenomena with high quality images.
基金Supported by the National Natural Science Foundation of China (61901308)。
文摘Background Owing to the limitations of the working principle of three-dimensional(3D) scanning equipment, the point clouds obtained by 3D scanning are usually sparse and unevenly distributed. Method In this paper, we propose a new generative adversarial network(GAN) that extends PU-GAN for upsampling of point clouds. Its core architecture aims to replace the traditional self-attention(SA) module with an implicit Laplacian offset attention(OA) module and to aggregate the adjacency features using a multiscale offset attention(MSOA)module, which adaptively adjusts the receptive field to learn various structural features. Finally, residual links are added to create our residual multiscale offset attention(RMSOA) module, which utilizes multiscale structural relationships to generate finer details. Result The results of several experiments show that our method outperforms existing methods and is highly robust.