期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Unsupervised multi-modal image translation based on the squeeze-and-excitation mechanism and feature attention module
1
作者 胡振涛 HU Chonghao +1 位作者 YANG Haoran SHUAI Weiwei 《High Technology Letters》 EI CAS 2024年第1期23-30,共8页
The unsupervised multi-modal image translation is an emerging domain of computer vision whose goal is to transform an image from the source domain into many diverse styles in the target domain.However,the multi-genera... The unsupervised multi-modal image translation is an emerging domain of computer vision whose goal is to transform an image from the source domain into many diverse styles in the target domain.However,the multi-generator mechanism is employed among the advanced approaches available to model different domain mappings,which results in inefficient training of neural networks and pattern collapse,leading to inefficient generation of image diversity.To address this issue,this paper introduces a multi-modal unsupervised image translation framework that uses a generator to perform multi-modal image translation.Specifically,firstly,the domain code is introduced in this paper to explicitly control the different generation tasks.Secondly,this paper brings in the squeeze-and-excitation(SE)mechanism and feature attention(FA)module.Finally,the model integrates multiple optimization objectives to ensure efficient multi-modal translation.This paper performs qualitative and quantitative experiments on multiple non-paired benchmark image translation datasets while demonstrating the benefits of the proposed method over existing technologies.Overall,experimental results have shown that the proposed method is versatile and scalable. 展开更多
关键词 multi-modal image translation generative adversarial network(GAN) squeezeand-excitation(SE)mechanism feature attention(FA)module
下载PDF
ANC: Attention Network for COVID-19 Explainable Diagnosis Based on Convolutional Block Attention Module 被引量:9
2
作者 Yudong Zhang Xin Zhang Weiguo Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第6期1037-1058,共22页
Aim: To diagnose COVID-19 more efficiently and more correctly, this study proposed a novel attention network forCOVID-19 (ANC). Methods: Two datasets were used in this study. An 18-way data augmentation was proposed t... Aim: To diagnose COVID-19 more efficiently and more correctly, this study proposed a novel attention network forCOVID-19 (ANC). Methods: Two datasets were used in this study. An 18-way data augmentation was proposed toavoid overfitting. Then, convolutional block attention module (CBAM) was integrated to our model, the structureof which is fine-tuned. Finally, Grad-CAM was used to provide an explainable diagnosis. Results: The accuracyof our ANC methods on two datasets are 96.32% ± 1.06%, and 96.00% ± 1.03%, respectively. Conclusions: Thisproposed ANC method is superior to 9 state-of-the-art approaches. 展开更多
关键词 Deep learning convolutional block attention module attention mechanism COVID-19 explainable diagnosis
下载PDF
MobileNet network optimization based on convolutional block attention module 被引量:3
3
作者 ZHAO Shuxu MEN Shiyao YUAN Lin 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第2期225-234,共10页
Deep learning technology is widely used in computer vision.Generally,a large amount of data is used to train the model weights in deep learning,so as to obtain a model with higher accuracy.However,massive data and com... Deep learning technology is widely used in computer vision.Generally,a large amount of data is used to train the model weights in deep learning,so as to obtain a model with higher accuracy.However,massive data and complex model structures require more calculating resources.Since people generally can only carry and use mobile and portable devices in application scenarios,neural networks have limitations in terms of calculating resources,size and power consumption.Therefore,the efficient lightweight model MobileNet is used as the basic network in this study for optimization.First,the accuracy of the MobileNet model is improved by adding methods such as the convolutional block attention module(CBAM)and expansion convolution.Then,the MobileNet model is compressed by using pruning and weight quantization algorithms based on weight size.Afterwards,methods such as Python crawlers and data augmentation are employed to create a garbage classification data set.Based on the above model optimization strategy,the garbage classification mobile terminal application is deployed on mobile phones and raspberry pies,realizing completing the garbage classification task more conveniently. 展开更多
关键词 MobileNet convolutional block attention module(CBAM) model pruning and quantization edge machine learning
下载PDF
Traffic Sign Recognition for Autonomous Vehicle Using Optimized YOLOv7 and Convolutional Block Attention Module 被引量:1
4
作者 P.Kuppusamy M.Sanjay +1 位作者 P.V.Deepashree C.Iwendi 《Computers, Materials & Continua》 SCIE EI 2023年第10期445-466,共22页
The infrastructure and construction of roads are crucial for the economic and social development of a region,but traffic-related challenges like accidents and congestion persist.Artificial Intelligence(AI)and Machine ... The infrastructure and construction of roads are crucial for the economic and social development of a region,but traffic-related challenges like accidents and congestion persist.Artificial Intelligence(AI)and Machine Learning(ML)have been used in road infrastructure and construction,particularly with the Internet of Things(IoT)devices.Object detection in Computer Vision also plays a key role in improving road infrastructure and addressing trafficrelated problems.This study aims to use You Only Look Once version 7(YOLOv7),Convolutional Block Attention Module(CBAM),the most optimized object-detection algorithm,to detect and identify traffic signs,and analyze effective combinations of adaptive optimizers like Adaptive Moment estimation(Adam),Root Mean Squared Propagation(RMSprop)and Stochastic Gradient Descent(SGD)with the YOLOv7.Using a portion of German traffic signs for training,the study investigates the feasibility of adopting smaller datasets while maintaining high accuracy.The model proposed in this study not only improves traffic safety by detecting traffic signs but also has the potential to contribute to the rapid development of autonomous vehicle systems.The study results showed an impressive accuracy of 99.7%when using a batch size of 8 and the Adam optimizer.This high level of accuracy demonstrates the effectiveness of the proposed model for the image classification task of traffic sign recognition. 展开更多
关键词 Object detection traffic sign detection YOLOv7 convolutional block attention module road sign detection ADAM
下载PDF
An enhanced method for predicting and analysing forest fires using an attention-based CNN model
5
作者 Shaifali Bhatt Usha Chouhan 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第4期115-127,共13页
Prediction,prevention,and control of forest fires are crucial on at all scales.Developing effective fire detection systems can aid in their control.This study proposes a novel CNN(convolutional neural network)using an... Prediction,prevention,and control of forest fires are crucial on at all scales.Developing effective fire detection systems can aid in their control.This study proposes a novel CNN(convolutional neural network)using an attention blocks module which combines an attention module with numerous input layers to enhance the performance of neural networks.The suggested model focuses on predicting the damage affected/burned areas due to possible wildfires and evaluating the multilateral interactions between the pertinent factors.The results show the impacts of CNN using attention blocks for feature extraction and to better understand how ecosystems are affected by meteorological factors.For selected meteorological data,RMSE 12.08 and MAE 7.45 values provide higher predictive power for selecting relevant and necessary features to provide optimal performance with less operational and computational costs.These findings show that the suggested strategy is reliable and effective for planning and managing fire-prone regions as well as for predicting forest fire damage. 展开更多
关键词 CNN Attention module Fire prediction ECOSYSTEM Damage prediction
下载PDF
Attention Mechanism-Based Method for Intrusion Target Recognition in Railway
6
作者 SHI Jiang BAI Dingyuan +2 位作者 GUO Baoqing WANG Yao RUAN Tao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期541-554,共14页
The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conven... The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conventional comprehensive video monitoring systems for railways,a railway foreign object intrusion recognition and detection system is conceived and implemented using edge computing and deep learning technologies.In a bid to raise detection accuracy,the convolutional block attention module(CBAM),including spatial and channel attention modules,is seamlessly integrated into the YOLOv5 model,giving rise to the CBAM-YOLOv5 model.Furthermore,the distance intersection-over-union_non-maximum suppression(DIo U_NMS)algorithm is employed in lieu of the weighted nonmaximum suppression algorithm,resulting in improved detection performance for intrusive targets.To accelerate detection speed,the model undergoes pruning based on the batch normalization(BN)layer,and Tensor RT inference acceleration techniques are employed,culminating in the successful deployment of the algorithm on edge devices.The CBAM-YOLOv5 model exhibits a notable 2.1%enhancement in detection accuracy when evaluated on a selfconstructed railway dataset,achieving 95.0%for mean average precision(m AP).Furthermore,the inference speed on edge devices attains a commendable 15 frame/s. 展开更多
关键词 foreign object detection railway protection edge computing spatial attention module channel attention module
下载PDF
Detection Algorithm of Laboratory Personnel Irregularities Based on Improved YOLOv7
7
作者 Yongliang Yang Linghua Xu +2 位作者 Maolin Luo Xiao Wang Min Cao 《Computers, Materials & Continua》 SCIE EI 2024年第2期2741-2765,共25页
Due to the complex environment of the university laboratory,personnel flow intensive,personnel irregular behavior is easy to cause security risks.Monitoring using mainstream detection algorithms suffers from low detec... Due to the complex environment of the university laboratory,personnel flow intensive,personnel irregular behavior is easy to cause security risks.Monitoring using mainstream detection algorithms suffers from low detection accuracy and slow speed.Therefore,the current management of personnel behavior mainly relies on institutional constraints,education and training,on-site supervision,etc.,which is time-consuming and ineffective.Given the above situation,this paper proposes an improved You Only Look Once version 7(YOLOv7)to achieve the purpose of quickly detecting irregular behaviors of laboratory personnel while ensuring high detection accuracy.First,to better capture the shape features of the target,deformable convolutional networks(DCN)is used in the backbone part of the model to replace the traditional convolution to improve the detection accuracy and speed.Second,to enhance the extraction of important features and suppress useless features,this paper proposes a new convolutional block attention module_efficient channel attention(CBAM_E)for embedding the neck network to improve the model’s ability to extract features from complex scenes.Finally,to reduce the influence of angle factor and bounding box regression accuracy,this paper proposes a newα-SCYLLA intersection over union(α-SIoU)instead of the complete intersection over union(CIoU),which improves the regression accuracy while increasing the convergence speed.Comparison experiments on public and homemade datasets show that the improved algorithm outperforms the original algorithm in all evaluation indexes,with an increase of 2.92%in the precision rate,4.14%in the recall rate,0.0356 in the weighted harmonic mean,3.60%in the mAP@0.5 value,and a reduction in the number of parameters and complexity.Compared with the mainstream algorithm,the improved algorithm has higher detection accuracy,faster convergence speed,and better actual recognition effect,indicating the effectiveness of the improved algorithm in this paper and its potential for practical application in laboratory scenarios. 展开更多
关键词 University laboratory personnel behavior YOLOv7 deformable convolutional networks attention module intersection over union
下载PDF
Two-Layer Attention Feature Pyramid Network for Small Object Detection
8
作者 Sheng Xiang Junhao Ma +2 位作者 Qunli Shang Xianbao Wang Defu Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期713-731,共19页
Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain les... Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors. 展开更多
关键词 Small object detection two-layer attention module small object detail enhancement module feature pyramid network
下载PDF
Fusion of Convolutional Self-Attention and Cross-Dimensional Feature Transformationfor Human Posture Estimation
9
作者 Anzhan Liu Yilu Ding Xiangyang Lu 《Journal of Beijing Institute of Technology》 EI CAS 2024年第4期346-360,共15页
Human posture estimation is a prominent research topic in the fields of human-com-puter interaction,motion recognition,and other intelligent applications.However,achieving highaccuracy in key point localization,which ... Human posture estimation is a prominent research topic in the fields of human-com-puter interaction,motion recognition,and other intelligent applications.However,achieving highaccuracy in key point localization,which is crucial for intelligent applications,contradicts the lowdetection accuracy of human posture detection models in practical scenarios.To address this issue,a human pose estimation network called AT-HRNet has been proposed,which combines convolu-tional self-attention and cross-dimensional feature transformation.AT-HRNet captures significantfeature information from various regions in an adaptive manner,aggregating them through convolu-tional operations within the local receptive domain.The residual structures TripNeck and Trip-Block of the high-resolution network are designed to further refine the key point locations,wherethe attention weight is adjusted by a cross-dimensional interaction to obtain more features.To vali-date the effectiveness of this network,AT-HRNet was evaluated using the COCO2017 dataset.Theresults show that AT-HRNet outperforms HRNet by improving 3.2%in mAP,4.0%in AP75,and3.9%in AP^(M).This suggests that AT-HRNet can offer more beneficial solutions for human posture estimation. 展开更多
关键词 human posture estimation adaptive fusion method cross-dimensional interaction attention module high-resolution network
下载PDF
Dual‑domain Joint Dense Multiple Small Ship Target Detection Algorithm for Spaceborne SAR Images
10
作者 JIA Peng DONG Tiancheng +3 位作者 WANG Taoyang ZHANG Guo SHENG Qinghong LI Jun 《Transactions of Nanjing University of Aeronautics and Astronautics》 CSCD 2024年第6期725-738,共14页
Ship detection via spaceborne synthetic aperture radar(SAR)has become a research hotspot.However,existing small ship detection methods based on the radar signal domain and SAR image features cannot obtain highly accur... Ship detection via spaceborne synthetic aperture radar(SAR)has become a research hotspot.However,existing small ship detection methods based on the radar signal domain and SAR image features cannot obtain highly accurate results because of the obvious coherent speckle noise at sea and strong reflection interference from near‑shore objects.To resolve the above problems,this study proposes a dual‑domain joint dense multiple small ship target detection method for spaceborne SAR image that simultaneously detects objects in the image and frequency domains.This method uses an attention mechanism module and algorithm structure adjustments to improve the small ship target feature mining ability.In the frequency‑based image generation,extreme signal strength values are detected in the azimuth and range directions,with the results of the two complementing each other to realize dual‑domain joint small ship target detection.The comprehensive qualitative and quantitative evaluation results show that the proposed method can attain a final precision rate of 92.25%and achieve accurate results for SAR ship detection in open‑sea,coastal,and port area ships.The test results for the self‑built SAR small‑ship dataset demonstrate the effectiveness and universality of the method. 展开更多
关键词 synthetic aperture radar(SAR) small ship detection deep learning attention module YOLO dual‑domain joint
下载PDF
Revolutionizing anemia detection:integrative machine learning models and advanced attention mechanisms
11
作者 Muhammad Ramzan Jinfang Sheng +2 位作者 Muhammad Usman Saeed Bin Wang Faisal Z.Duraihem 《Visual Computing for Industry,Biomedicine,and Art》 2024年第1期183-195,共13页
This study addresses the critical issue of anemia detection using machine learning(ML)techniques.Although a widespread blood disorder with significant health implications,anemia often remains undetected.This necessita... This study addresses the critical issue of anemia detection using machine learning(ML)techniques.Although a widespread blood disorder with significant health implications,anemia often remains undetected.This necessitates timely and efficient diagnostic methods,as traditional approaches that rely on manual assessment are time-consuming and subjective.The present study explored the application of ML-particularly classification models,such as logistic regression,decision trees,random forest,support vector machines,Naïve Bayes,and k-nearest neighbors-in conjunction with innovative models incorporating attention modules and spatial attention to detect anemia.The proposed models demonstrated promising results,achieving high accuracy,precision,recall,and F1 scores for both textual and image datasets.In addition,an integrated approach that combines textual and image data was found to outperform the individual modalities.Specifically,the proposed AlexNet Multiple Spatial Attention model achieved an exceptional accuracy of 99.58%,emphasizing its potential to revolutionize automated anemia detection.The results of ablation studies confirm the significance of key components-including the blue-green-red,multiple,and spatial attentions-in enhancing model performance.Overall,this study presents a comprehensive and innovative framework for noninvasive anemia detection,contributing valuable insights to the field. 展开更多
关键词 ANEMIA NONINVASIVE MULTIMODAL Feature fusion Attention module
下载PDF
基于注意力特征融合的SqueezeNet细粒度图像分类模型 被引量:8
12
作者 李明悦 何乐生 +1 位作者 雷晨 龚友梅 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第5期868-876,共9页
针对现有细粒度图像分类算法普遍存在的模型结构复杂、参数多、分类准确率较低等问题,提出一种注意力特征融合的SqueezeNet细粒度图像分类模型.通过对现有细粒度图像分类算法和轻量级卷积神经网络的分析,首先使用3个典型的预训练轻量级... 针对现有细粒度图像分类算法普遍存在的模型结构复杂、参数多、分类准确率较低等问题,提出一种注意力特征融合的SqueezeNet细粒度图像分类模型.通过对现有细粒度图像分类算法和轻量级卷积神经网络的分析,首先使用3个典型的预训练轻量级卷积神经网络,对其微调后在公开的细粒度图像数据集上进行验证,经比较后选择了模型性能最佳的SqueezeNet作为图像的特征提取器;然后将两个具有注意力机制的卷积模块嵌入至SqueezeNet网络的每个Fire模块;接着提取出改进后的SqueezeNet的中间层特征进行双线性融合形成新的注意力特征图,与网络的全局特征再融合后分类;最后通过实验对比和可视化分析,网络嵌入Convolution Block Attention Module(CBAM)模块的分类准确率在鸟类、汽车、飞机数据集上依次提高了8.96%、4.89%和5.85%,嵌入Squeeze-and-Excitation(SE)模块的分类准确率依次提高了9.81%、4.52%和2.30%,且新模型在参数量、运行效率等方面比现有算法更具优势. 展开更多
关键词 细粒度图像分类 轻量级卷积神经网络 SqueezeNet 注意力机制 Convolution Block Attention module(CBAM) Squeeze-and-Excitation(SE) 特征融合
下载PDF
Disease Recognition of Apple Leaf Using Lightweight Multi-Scale Network with ECANet 被引量:4
13
作者 Helong Yu Xianhe Cheng +2 位作者 Ziqing Li Qi Cai Chunguang Bi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第9期711-738,共28页
To solve the problem of difficulty in identifying apple diseases in the natural environment and the low application rate of deep learning recognition networks,a lightweight ResNet(LW-ResNet)model for apple disease rec... To solve the problem of difficulty in identifying apple diseases in the natural environment and the low application rate of deep learning recognition networks,a lightweight ResNet(LW-ResNet)model for apple disease recognition is proposed.Based on the deep residual network(ResNet18),the multi-scale feature extraction layer is constructed by group convolution to realize the compression model and improve the extraction ability of different sizes of lesion features.By improving the identity mapping structure to reduce information loss.By introducing the efficient channel attention module(ECANet)to suppress noise from a complex background.The experimental results show that the average precision,recall and F1-score of the LW-ResNet on the test set are 97.80%,97.92%and 97.85%,respectively.The parameter memory is 2.32 MB,which is 94%less than that of ResNet18.Compared with the classic lightweight networks SqueezeNet and MobileNetV2,LW-ResNet has obvious advantages in recognition performance,speed,parameter memory requirement and time complexity.The proposed model has the advantages of low computational cost,low storage cost,strong real-time performance,high identification accuracy,and strong practicability,which can meet the needs of real-time identification task of apple leaf disease on resource-constrained devices. 展开更多
关键词 Apple disease recognition deep residual network multi-scale feature efficient channel attention module lightweight network
下载PDF
An attention-based prototypical network for forest fire smoke few-shot detection 被引量:2
14
作者 Tingting Li Haowei Zhu +1 位作者 Chunhe Hu Junguo Zhang 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第5期1493-1504,共12页
Existing almost deep learning methods rely on a large amount of annotated data, so they are inappropriate for forest fire smoke detection with limited data. In this paper, a novel hybrid attention-based few-shot learn... Existing almost deep learning methods rely on a large amount of annotated data, so they are inappropriate for forest fire smoke detection with limited data. In this paper, a novel hybrid attention-based few-shot learning method, named Attention-Based Prototypical Network, is proposed for forest fire smoke detection. Specifically, feature extraction network, which consists of convolutional block attention module, could extract high-level and discriminative features and further decrease the false alarm rate resulting from suspected smoke areas. Moreover, we design a metalearning module to alleviate the overfitting issue caused by limited smoke images, and the meta-learning network enables achieving effective detection via comparing the distance between the class prototype of support images and the features of query images. A series of experiments on forest fire smoke datasets and miniImageNet dataset testify that the proposed method is superior to state-of-the-art few-shot learning approaches. 展开更多
关键词 Forest fire smoke detection Few-shot learning Channel attention module Spatial attention module Prototypical network
下载PDF
Bilateral U-Net semantic segmentation with spatial attention mechanism 被引量:2
15
作者 Guangzhe Zhao Yimeng Zhang +1 位作者 Maoning Ge Min Yu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第2期297-307,共11页
Aiming at the problem that the existing models have a poor segmentation effect on imbalanced data sets with small-scale samples,a bilateral U-Net network model with a spatial attention mechanism is designed.The model ... Aiming at the problem that the existing models have a poor segmentation effect on imbalanced data sets with small-scale samples,a bilateral U-Net network model with a spatial attention mechanism is designed.The model uses the lightweight MobileNetV2 as the backbone network for feature hierarchical extraction and proposes an Attentive Pyramid Spatial Attention(APSA)module compared to the Attenuated Spatial Pyramid module,which can increase the receptive field and enhance the information,and finally adds the context fusion prediction branch that fuses high-semantic and low-semantic prediction results,and the model effectively improves the segmentation accuracy of small data sets.The experimental results on the CamVid data set show that compared with some existing semantic segmentation networks,the algorithm has a better segmentation effect and segmentation accuracy,and its mIOU reaches 75.85%.Moreover,to verify the generality of the model and the effectiveness of the APSA module,experiments were conducted on the VOC 2012 data set,and the APSA module improved mIOU by about 12.2%. 展开更多
关键词 attention mechanism receptive field semantic fusion semantic segmentation spatial attention module U-Net
下载PDF
Gear Pitting Measurement by Multi-Scale Splicing Attention U-Net 被引量:1
16
作者 Yi Qin Dejun Xi +1 位作者 Weiwei Chen Yi Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期140-154,共15页
The judgment of gear failure is based on the pitting area ratio of gear.Traditional gear pitting calculation method mainly rely on manual visual inspection.This method is greatly affected by human factors,and is great... The judgment of gear failure is based on the pitting area ratio of gear.Traditional gear pitting calculation method mainly rely on manual visual inspection.This method is greatly affected by human factors,and is greatly affected by the working experience,training degree and fatigue degree of the detection personnel,so the detection results may be biased.The non-contact computer vision measurement can carry out non-destructive testing and monitoring under the working condition of the machine,and has high detection accuracy.To improve the measurement accuracy of gear pitting,a novel multi-scale splicing attention U-Net(MSSA U-Net)is explored in this study.An image splicing module is first proposed for concatenating the output feature maps of multiple convolutional layers into a splicing feature map with more semantic information.Then,an attention module is applied to select the key features of the splicing feature map.Given that MSSA U-Net adequately uses multi-scale semantic features,it has better segmentation performance on irregular small objects than U-Net and attention U-Net.On the basis of the designed visual detection platform and MSSA U-Net,a methodology for measuring the area ratio of gear pitting is proposed.With three datasets,experimental results show that MSSA U-Net is superior to existing typical image segmentation methods and can accurately segment different levels of pitting due to its strong segmentation ability.Therefore,the proposed methodology can be effectively applied in measuring the pitting area ratio and determining the level of gear pitting. 展开更多
关键词 Gear pitting Image segmentation Attention module Computer vision Quantitative detection
下载PDF
Single Image Deraining Using Dual Branch Network Based on Attention Mechanism for IoT 被引量:1
17
作者 Di Wang Bingcai Wei Liye Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1989-2000,共12页
Extracting useful details from images is essential for the Internet of Things project.However,in real life,various external environments,such as badweather conditions,will cause the occlusion of key target information... Extracting useful details from images is essential for the Internet of Things project.However,in real life,various external environments,such as badweather conditions,will cause the occlusion of key target information and image distortion,resulting in difficulties and obstacles to the extraction of key information,affecting the judgment of the real situation in the process of the Internet of Things,and causing system decision-making errors and accidents.In this paper,we mainly solve the problem of rain on the image occlusion,remove the rain grain in the image,and get a clear image without rain.Therefore,the single image deraining algorithm is studied,and a dual-branch network structure based on the attention module and convolutional neural network(CNN)module is proposed to accomplish the task of rain removal.In order to complete the rain removal of a single image with high quality,we apply the spatial attention module,channel attention module and CNN module to the network structure,and build the network using the coder-decoder structure.In the experiment,with the structural similarity(SSIM)and the peak signal-to-noise ratio(PSNR)as evaluation indexes,the training and testing results on the rain removal dataset show that the proposed structure has a good effect on the single image deraining task. 展开更多
关键词 Internet of Things image deraining dual-branch network structure attention module convolutional neural network
下载PDF
Siamese Dense Pixel-Level Fusion Network for Real-Time UAV Tracking 被引量:1
18
作者 Zhenyu Huang Gun Li +4 位作者 Xudong Sun Yong Chen Jie Sun Zhangsong Ni Yang Yang 《Computers, Materials & Continua》 SCIE EI 2023年第9期3219-3238,共20页
Onboard visual object tracking in unmanned aerial vehicles(UAVs)has attractedmuch interest due to its versatility.Meanwhile,due to high precision,Siamese networks are becoming hot spots in visual object tracking.Howev... Onboard visual object tracking in unmanned aerial vehicles(UAVs)has attractedmuch interest due to its versatility.Meanwhile,due to high precision,Siamese networks are becoming hot spots in visual object tracking.However,most Siamese trackers fail to balance the tracking accuracy and time within onboard limited computational resources of UAVs.To meet the tracking precision and real-time requirements,this paper proposes a Siamese dense pixel-level network for UAV object tracking named SiamDPL.Specifically,the Siamese network extracts features of the search region and the template region through a parameter-shared backbone network,then performs correlationmatching to obtain the candidate regionwith high similarity.To improve the matching effect of template and search features,this paper designs a dense pixel-level feature fusion module to enhance the matching ability by pixel-wise correlation and enrich the feature diversity by dense connection.An attention module composed of self-attention and channel attention is introduced to learn global context information and selectively emphasize the target feature region in the spatial and channel dimensions.In addition,a target localization module is designed to improve target location accuracy.Compared with other advanced trackers,experiments on two public benchmarks,which are UAV123@10fps and UAV20L fromthe unmanned air vehicle123(UAV123)dataset,show that SiamDPL can achieve superior performance and low complexity with a running speed of 100.1 fps on NVIDIA TITAN RTX. 展开更多
关键词 Siamese network UAV object tracking dense pixel-level feature fusion attention module target localization
下载PDF
Multi-Scale Attention-Based Deep Neural Network for Brain Disease Diagnosis 被引量:1
19
作者 Yin Liang Gaoxu Xu Sadaqat ur Rehman 《Computers, Materials & Continua》 SCIE EI 2022年第9期4645-4661,共17页
Whole brain functional connectivity(FC)patterns obtained from resting-state functional magnetic resonance imaging(rs-fMRI)have been widely used in the diagnosis of brain disorders such as autism spectrum disorder(ASD)... Whole brain functional connectivity(FC)patterns obtained from resting-state functional magnetic resonance imaging(rs-fMRI)have been widely used in the diagnosis of brain disorders such as autism spectrum disorder(ASD).Recently,an increasing number of studies have focused on employing deep learning techniques to analyze FC patterns for brain disease classification.However,the high dimensionality of the FC features and the interpretation of deep learning results are issues that need to be addressed in the FC-based brain disease classification.In this paper,we proposed a multi-scale attention-based deep neural network(MSA-DNN)model to classify FC patterns for the ASD diagnosis.The model was implemented by adding a flexible multi-scale attention(MSA)module to the auto-encoder based backbone DNN,which can extract multi-scale features of the FC patterns and change the level of attention for different FCs by continuous learning.Our model will reinforce the weights of important FC features while suppress the unimportant FCs to ensure the sparsity of the model weights and enhance the model interpretability.We performed systematic experiments on the large multi-sites ASD dataset with both ten-fold and leaveone-site-out cross-validations.Results showed that our model outperformed classical methods in brain disease classification and revealed robust intersite prediction performance.We also localized important FC features and brain regions associated with ASD classification.Overall,our study further promotes the biomarker detection and computer-aided classification for ASD diagnosis,and the proposed MSA module is flexible and easy to implement in other classification networks. 展开更多
关键词 Autism spectrum disorder diagnosis resting-state fMRI deep neural network functional connectivity multi-scale attention module
下载PDF
Power Plant Indicator Light Detection System Based on Improved YOLOv5 被引量:1
20
作者 Yunzuo Zhang Kaina Guo 《Journal of Beijing Institute of Technology》 EI CAS 2022年第6期605-612,共8页
Electricity plays a vital role in daily life and economic development.The status of the indicator lights of the power plant needs to be checked regularly to ensure the normal supply of electricity.Aiming at the proble... Electricity plays a vital role in daily life and economic development.The status of the indicator lights of the power plant needs to be checked regularly to ensure the normal supply of electricity.Aiming at the problem of a large amount of data and different sizes of indicator light detection,we propose an improved You Only Look Once vision 5(YOLOv5)power plant indicator light detection algorithm.The algorithm improves the feature extraction ability based on YOLOv5s.First,our algorithm enhances the ability of the network to perceive small objects by combining attention modules for multi-scale feature extraction.Second,we adjust the loss function to ensure the stability of the object frame during the regression process and improve the conver-gence accuracy.Finally,transfer learning is used to augment the dataset to improve the robustness of the algorithm.The experimental results show that the average accuracy of the proposed squeeze-and-excitation YOLOv5s(SE-YOLOv5s)algorithm is increased by 4.39%to 95.31%compared with the YOLOv5s algorithm.The proposed algorithm can better meet the engineering needs of power plant indicator light detection. 展开更多
关键词 You Only Look Once vision 5(YOLOv5) attention module loss function transfer learning object detection system
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部