期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Evaluation of underground blast-induced ground motions through nearsurface low-velocity geological layers
1
作者 Yonggang Gou Xiuzhi Shi +2 位作者 Zhi Yu Xiaofeng Huo Xianyang Qiu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期600-617,共18页
Surface ground motion produced by underground blasts is significantly influenced by near-surface geological conditions.However,near-surface low-propagation velocity layers were always ignored in past analyses of groun... Surface ground motion produced by underground blasts is significantly influenced by near-surface geological conditions.However,near-surface low-propagation velocity layers were always ignored in past analyses of ground motions due to their thin thickness.With the rising concern about surface ground motions produced by the ascendant scale and frequentness of underground excavation and mining,close attention is gradually paid to ground blast vibrations.Therefore,systemic experiments were conducted and took seven months in an underground mine to clarify the variation of motion from underground rock to surface ground.The attenuation of surface ground peak particle velocities(PPVs)is compared to that in underground rock,and horizontal amplitudes are compared to vertical amplitudes.Differences between bedrock and surface ground vibrations are analyzed to illustrate the site effect of near-surface lower-propagation velocity layers.One-dimensional site response analysis is employed to quantify the influence of different geological profiles on surface ground vibrations.The experimental data and site response analysis allowed the following conclusions:(1)geological site effects mainly produce decreasing dominant frequency(DF)of surface ground vibrations;(2)the site amplification effect of blast vibration needs to be characterized by peak particle displacement(PPD);(3)shear waves(S-waves)begin to dominate and surface Rayleigh waves(R-waves)develop as blast-induced ground vibrations travel upward through rock and lower-velocity layers to the surface.The comparison of response relative displacement to a critical value is best to assess the potential for cracking on surface structures. 展开更多
关键词 Surface ground motions Underground blasts Geological site condition amplitude attenuation Site response analysis
下载PDF
Method to eliminate the attenuation of the amplitude with the time for output fast signal of BaF_2 scintillation detector 被引量:1
2
《Chinese Science Bulletin》 SCIE CAS 1998年第24期2103-2104,共2页
关键词 TIME scintillation detector Method to eliminate the attenuation of the amplitude with the time for output fast signal of BaF2
原文传递
Research on propagation properties of elastic waves in two-phase anisotropic media 被引量:1
3
作者 刘洋 李承楚 《Acta Seismologica Sinica(English Edition)》 CSCD 1999年第4期405-412,494,共9页
With the development of seismic engineering and seismic exploration of energy, the underground media that westudy are more and more complicated. Conventional anisotropy theory or two-phase isotropy theory is difficult... With the development of seismic engineering and seismic exploration of energy, the underground media that westudy are more and more complicated. Conventional anisotropy theory or two-phase isotropy theory is difficult todescribe anisotropic media containing fluid, such as fractures containing gas, shales containing water Based onBlot theory about two-phase anisotropy, with the use of elastic plane wave equations, we get Christoffel equations.We calculate and analyze the effects of frequency on phase velocity, attenuation, amplitude ratio and polarizationdirection of elastic waves of two-phase, transversely isotropic media. Results show that frequency affects slow Pwave the greatest among the four kinds of waves, i.e., fast P wave, slow P wave, fast S wave and slow S wave.Fluid phase amplitude to solid phase amplitude ratio of fast P wave, fast S wave and slow S wave approaches unitfor large dissipation coefficients. Polarization analysis shows that polarization direction of fluid phase displacement is different from, not parallel to or reverse to, that of solid phase displacement in two-phase anisotropic media. 展开更多
关键词 two-phase anisotropy elastic wave phase velocity attenuation amplitude ratio polarization
下载PDF
Study of errors in ultrasonic heat meter measurements caused by impurities of water based on ultrasonic attenuation 被引量:14
4
作者 石硕 刘正刚 +3 位作者 孙建亭 张敏 杜广生 李冬 《Journal of Hydrodynamics》 SCIE EI CSCD 2015年第1期141-149,共9页
Impurity is one of the main factors that affect the measurement accuracy of an ultrasonic heat meter. To study the effects of different impurity species and concentrations on the accuracy of heat meters, flow tests we... Impurity is one of the main factors that affect the measurement accuracy of an ultrasonic heat meter. To study the effects of different impurity species and concentrations on the accuracy of heat meters, flow tests were carried out for the suspending of calcium carbonate and yellow mud. By analyzing the attenuation characteristics of the ultrasound amplitude in different impurity concentrations and species, the influence of the impurities on the heat meter measurement accuracy is evaluated. In order to avoid the inaccuracy caused by the sediment of the reflective bottom surface, a vortex generator is put ahead of the reflective surface. According to the test, the calcium carbonate suspension with a mass concentration of 1%, which influences the heat meter accuracy severely, is used as the flow media. The influence of the vortex generator on the calcium carbonate suspension flow field in the heat meter body is studied with numerical simulations. The results of this paper provide some theoretical guide on improving the heat meter measurement accuracy when the water contains impurities. 展开更多
关键词 IMPURITIES ultrasonic heat meter amplitude attenuation measuring error experiment study
原文传递
Variable optical attenuators with ability to independently control two orthogonal linearly polarized light amplitudes 被引量:1
5
作者 黄崇佳 陈凯荣 《Chinese Optics Letters》 SCIE EI CAS CSCD 2018年第4期90-93,共4页
New techniques for controlling the amplitudes of two orthogonal linearly polarized light are presented. One is based on adjusting the DC voltage into a Mach–Zehnder modulator(MZM) to alter the amplitude of the ligh... New techniques for controlling the amplitudes of two orthogonal linearly polarized light are presented. One is based on adjusting the DC voltage into a Mach–Zehnder modulator(MZM) to alter the amplitude of the light traveling on the slow axis of a fiber into the modulator with little changes in the fast-axis light amplitude.Another is based on adjusting the input DC voltages of a dual-polarization MZM operating in the reverse direction, which enables independent control of the two input orthogonal linearly polarized light amplitudes.Experimental results demonstrate that more than 30 dB difference in slow-and fast-axis light power can be obtained by controlling an MZM input DC voltage, and over 24 dB independent power adjustment for light traveling on the slow and fast axes into a dual-polarization MZM. 展开更多
关键词 MZM DC Variable optical attenuators with ability to independently control two orthogonal linearly polarized light amplitudes
原文传递
Q Inversion and Comparison of Influential Factors among Three Methods: CFS, SR, and AA
6
作者 Yinting Wu J.T.Wu 《Communications in Computational Physics》 SCIE 2020年第6期356-371,共16页
The goals of this study were to examine factors influencing Q inversion and to provide references for practical application.Three different methods for inverting Q values with VSP data were explored,including centroid... The goals of this study were to examine factors influencing Q inversion and to provide references for practical application.Three different methods for inverting Q values with VSP data were explored,including centroid frequency shift(CFS),spectral ratio(SR),and amplitude attenuation(AA).Comparison between the CFS and the other two methods was conducted on frequency band widths and low attenuation,wavefield components,interface interference,and thin layers.Results from several sets of VSP modeling data indicated that the CFS method is more stable and accurate for dealing with thin and high Q layers.Frequency band width,especially the presence of high frequencies,influences the inversion effect of all three methods.The wider the band,the better the results.Q inversion from downgoing wavefield was very similar to that of the upgoing wavefield.The CFS method had fewer outliers or skip values from the full wavefield than the other two methods.Moreover,the applications to Q inversion for the set of field VSP data demonstrated that the Q curves from the CFS method coincided with the geological interpretations better than the Q curves of the other methods.Meanwhile,inverse Q filtering shifted the frequency component from 25 Hz to 35 Hz.The results demonstrated that the Q curve is more sensitive to geological horizons than velocity. 展开更多
关键词 Q inversion centroid frequency shift amplitude attenuation spectral ratio zero-offset VSP data
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部