BACKGROUND The severity of nonalcoholic fatty liver disease(NAFLD)and lipid metabolism are related to the occurrence of colorectal polyps.Liver-controlled attenuation parameters(liver-CAPs)have been established to pre...BACKGROUND The severity of nonalcoholic fatty liver disease(NAFLD)and lipid metabolism are related to the occurrence of colorectal polyps.Liver-controlled attenuation parameters(liver-CAPs)have been established to predict the prognosis of hepatic steatosis patients.AIM To explore the risk factors associated with colorectal polyps in patients with NAFLD by analyzing liver-CAPs and establishing a diagnostic model.METHODS Patients who were diagnosed with colorectal polyps in the Department of Gastroenterology of our hospital between June 2021 and April 2022 composed the case group,and those with no important abnormalities composed the control group.The area under the receiver operating characteristic curve was used to predict the diagnostic efficiency.Differences were considered statistically significant when P<0.05.RESULTS The median triglyceride(TG)and liver-CAP in the case group were significantly greater than those in the control group(mmol/L,1.74 vs 1.05;dB/m,282 vs 254,P<0.05).TG and liver-CAP were found to be independent risk factors for colorectal polyps,with ORs of 2.338(95%CI:1.154–4.733)and 1.019(95%CI:1.006–1.033),respectively(P<0.05).And there was no difference in the diagnostic efficacy between liver-CAP and TG combined with liver-CAP(TG+CAP)(P>0.05).When the liver-CAP was greater than 291 dB/m,colorectal polyps were more likely to occur.CONCLUSION The levels of TG and liver-CAP in patients with colorectal polyps are significantly greater than those patients without polyps.Liver-CAP alone can be used to diagnose NAFLD with colorectal polyps.展开更多
Prediction of peak ground acceleration is an essential element in engineering seismology and it has received great attention in last few decades. In this paper, a comprehensive database of the strong-motion records of...Prediction of peak ground acceleration is an essential element in engineering seismology and it has received great attention in last few decades. In this paper, a comprehensive database of the strong-motion records of the 2008 great Wenchuan Ms 8.0 earthquake is analyzed to investigate the seismic attenuation relationship and the directivity effects. In contrast to most existing seismic attenuation models, the proposed model considers explicitly the directivity effect which has primary influence on the magnitude of ground motion. Bayesian model updating is used to obtain the model parameters and the associated uncertainty. Comparative study is performed with the well-known Boore-Joyner-Fumal empirical formula. Results show that consideration of the directivity effect is vital in modeling the seismic attenuation relationship.展开更多
Peak ground acceleration(PGA) estimation is an important task in earthquake engineering practice.One of the most well-known models is the Boore-Joyner-Fumal formula,which estimates the PGA using the moment magnitude,t...Peak ground acceleration(PGA) estimation is an important task in earthquake engineering practice.One of the most well-known models is the Boore-Joyner-Fumal formula,which estimates the PGA using the moment magnitude,the site-to-fault distance and the site foundation properties.In the present study,the complexity for this formula and the homogeneity assumption for the prediction-error variance are investigated and an effi ciency-robustness balanced formula is proposed.For this purpose,a reduced-order Monte Carlo simulation algorithm for Bayesian model class selection is presented to obtain the most suitable predictive formula and prediction-error model for the seismic attenuation relationship.In this approach,each model class(a predictive formula with a prediction-error model) is evaluated according to its plausibility given the data.The one with the highest plausibility is robust since it possesses the optimal balance between the data fi tting capability and the sensitivity to noise.A database of strong ground motion records in the Tangshan region of China is obtained from the China Earthquake Data Center for the analysis.The optimal predictive formula is proposed based on this database.It is shown that the proposed formula with heterogeneous prediction-error variance is much simpler than the attenuation model suggested by Boore,Joyner and Fumal(1993).展开更多
Seismic attenuation is a fundamental property of the Earth's media.Attenuation structure for the complicated geological structures with strong seismicity in the Sichuan-Yunnan region is poorly studied.In this stud...Seismic attenuation is a fundamental property of the Earth's media.Attenuation structure for the complicated geological structures with strong seismicity in the Sichuan-Yunnan region is poorly studied.In this study,we collected 108,399 waveforms of 11,517 local small earthquakes with magnitudes between 1.5 and 3.5 from January 2014 to September 2021 in the Sichuan-Yunnan region and its adjacent areas.We employed an envelope inversion technique for separating the intrinsic and scattering attenuations of the S coda wave,and obtained the intrinsic and scattering attenuation structures for frequencies between 0.25 and 8.00 Hz.The attenuation structures correlate well with the geological units,and some major faults mark the attenuation variations where historic large earthquakes have occurred.The regional average attenuation shows a negative frequency dependence.The average scattering attenuation has a faster descending rate than the average intrinsic attenuation,and is dominant at low frequencies,while at high frequencies the average intrinsic attenuation is stronger.The lateral variation in the intrinsic attenuation is consistent with the variation in heat flow,the scattering attenuation may be related to the scatter distribution and size.The total attenuation is consistent with the previous studies in this region,and the separate intrinsic and scattering attenuation may be useful in understanding regional tectonics and important in earthquake prevention and disaster reduction.展开更多
Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and...Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and time-lapse seismic surveillance of both conventional and unconventional reservoir and overburden performances.A Seismic Elastic Moduli Module has been developed,based on the forced-oscillations method,to experimentally investigate the frequency dependence of Young's modulus and Poisson's ratio,as well as the inferred attenuation,of cylindrical samples under different confining pressure conditions.Calibration with three standard samples showed that the measured elastic moduli were consistent with the published data,indicating that the new apparatus can operate reliably over a wide frequency range of f∈[1-2000,10^(6)]Hz.The Young's modulus and Poisson's ratio of the shale and the tight sandstone samples were measured under axial stress oscillations to assess the frequency-and pressure-dependent effects.Under dry condition,both samples appear to be nearly frequency independent,with weak pressure dependence for the shale and significant pressure dependence for the sandstone.In particular,it was found that the tight sandstone with complex pore microstructure exhibited apparent dispersion and attenuation under brine or glycerin saturation conditions,the levels of which were strongly influenced by the increased effective pressure.In addition,the measured Young's moduli results were compared with the theoretical predictions from a scaled poroelastic model with a reasonably good agreement,revealing that the combined fluid flow mechanisms at both mesoscopic and microscopic scales possibly responsible for the measured dispersion.展开更多
The paper develops a multiple matching attenuation method based on extended filtering in the curvelet domain,which combines the traditional Wiener filtering method with the matching attenuation method in curvelet doma...The paper develops a multiple matching attenuation method based on extended filtering in the curvelet domain,which combines the traditional Wiener filtering method with the matching attenuation method in curvelet domain.Firstly,the method uses the predicted multiple data to generate the Hilbert transform records,time derivative records and time derivative records of Hilbert transform.Then,the above records are transformed into the curvelet domain and multiple matching attenuation based on least squares extended filtering is performed.Finally,the attenuation results are transformed back into the time-space domain.Tests on the model data and field data show that the method proposed in the paper effectively suppress the multiples while preserving the primaries well.Furthermore,it has higher accuracy in eliminating multiple reflections,which is more suitable for the multiple attenuation tasks in the areas with complex structures compared to the time-space domain extended filtering method and the conventional curvelet transform method.展开更多
Combining periodic layered structure with three-dimensional cylindrical local resonators,a hybrid metastructure with improved wave isolation ability was designed and investigated through theoretical and numerical appr...Combining periodic layered structure with three-dimensional cylindrical local resonators,a hybrid metastructure with improved wave isolation ability was designed and investigated through theoretical and numerical approaches.The metastructure is composed of periodic rubber layers and concrete layers embedded with three-dimensional resonators,which can be freely designed with multi local resonant frequencies to attenuate vibrations at required frequencies and widen the attenuation bandgap.The metastructure can also effectively attenuate seismic responses.Compared with layered rubber-based structures,the metastructure has more excellent wave attenuation effects with greater attenuation and wider bandgap.展开更多
Time-frequency analysis is a successfully used tool for analyzing the local features of seismic data.However,it suffers from several inevitable limitations,such as the restricted time-frequency resolution,the difficul...Time-frequency analysis is a successfully used tool for analyzing the local features of seismic data.However,it suffers from several inevitable limitations,such as the restricted time-frequency resolution,the difficulty in selecting parameters,and the low computational efficiency.Inspired by deep learning,we suggest a deep learning-based workflow for seismic time-frequency analysis.The sparse S transform network(SSTNet)is first built to map the relationship between synthetic traces and sparse S transform spectra,which can be easily pre-trained by using synthetic traces and training labels.Next,we introduce knowledge distillation(KD)based transfer learning to re-train SSTNet by using a field data set without training labels,which is named the sparse S transform network with knowledge distillation(KD-SSTNet).In this way,we can effectively calculate the sparse time-frequency spectra of field data and avoid the use of field training labels.To test the availability of the suggested KD-SSTNet,we apply it to field data to estimate seismic attenuation for reservoir characterization and make detailed comparisons with the traditional time-frequency analysis methods.展开更多
Introduction: Computed tomography (CT) measurements of bone mineral attenuation may be a useful means to identify older women who should be prioritized for bone mineral density screening. Methods: We compared bone min...Introduction: Computed tomography (CT) measurements of bone mineral attenuation may be a useful means to identify older women who should be prioritized for bone mineral density screening. Methods: We compared bone mineral attenuation as measured in the L1 vertebra of CT studies to the results of dual-energy x-ray absorptiometry (DEXA) studies to determine what CT attenuation thresholds might yield a reasonable combination of sensitivity and specificity for the detection of osteoporosis. The study was limited to women between the ages of 65 and 75 years who had a DEXA study and a CT that included the L1 or adjacent vertebra performed within 3 years of the DEXA study. Results: There were 1226 women in this study, of whom 452 (38%) had osteoporosis based on a T-score ≤ −2.5 by DEXA. There were 830 CT studies performed with contrast and 396 studies which were performed without contrast. There was a statistically significant difference in the mean HU of those studies performed without contrast compared to those with contrast (unenhanced mean 103 HU versus 125 HU, p < 0.001). Different CT attenuation thresholds provided the most appropriate combination of sensitivity and specificity for the detection of osteoporosis when comparing CT studies performed without or with IV contrast and when all the CT data were used in aggregate. Conclusion: Different thresholds appear necessary when using the mean CT vertebral attenuation to identify older women for preferential referral for DEXA studies.展开更多
Broadband vibration attenuation is a challenging task in engineering since it is difficult to achieve low-frequency and broadband vibration control simultaneously.To solve this problem,this paper designs a piezoelectr...Broadband vibration attenuation is a challenging task in engineering since it is difficult to achieve low-frequency and broadband vibration control simultaneously.To solve this problem,this paper designs a piezoelectric meta-beam with unidirectional electric circuits,exhibiting promising broadband attenuation capabilities.An analytical model in a closed form for achieving the solution of unidirectional vibration transmission of the designed meta-beam is developed based on the state-space transfer function method.The method can analyze the forward and backward vibration transmission of the piezoelectric meta-beam in a unified manner,providing reliable dynamics solutions of the beam.The analytical results indicate that the meta-beam effectively reduces the unidirectional vibration across a broad low-frequency range,which is also verified by the solutions obtained from finite element analyses.The designed meta-beam and the proposed analytical method facilitate a comprehensive investigation into the distinctive unidirectional transmission behavior and superb broadband vibration attenuation performance.展开更多
A set of laboratory experiments are carried out to investigate the effect of following/opposing currents on wave attenuation.Rigid vegetation canopies with aligned and staggered configurations were tested under the co...A set of laboratory experiments are carried out to investigate the effect of following/opposing currents on wave attenuation.Rigid vegetation canopies with aligned and staggered configurations were tested under the condition of various regular wave heights and current velocities,with the constant water depth being 0.60 m to create the desired submerged scenarios.Results show that the vegetation-induced wave dissipation is enhanced with the increasing incident wave height.A larger velocity magnititude leads to a greater wave height attenuation for both following and opposing current conditions.Moreover,there is a strong positive linear correlation between the damping coefficientβand the relative wave height H_(0)/h,especially for pure wave conditions.For the velocity profile,the distributions of U_(min)and U_(max)show different patterns under combined wave and current.The time-averaged turbulent kinetic energy(TKE)vary little under pure wave and U_(c)=±0.05 m/s conditions.With the increase of flow velocity amplitude,the time-averaged TKE shows a particularly pronounced increase trend at the top of the canopy.The vegetation drag coefficients are obtained by a calibration approach.The empirical relations of drag coefficient with Reynolds and Keulegane-Carpenter numbers are proposed to further understand the wave-current-vegetation interaction mechanism.展开更多
P-and SV-wave dispersion and attenuation have been extensively investigated in saturated poroelastic media with aligned fractures.However,there are few existing models that incorporate the multiple wave attenuation me...P-and SV-wave dispersion and attenuation have been extensively investigated in saturated poroelastic media with aligned fractures.However,there are few existing models that incorporate the multiple wave attenuation mechanisms from the microscopic scale to the macroscopic scale.Hence,in this work,we developed a unified model to incorporate the wave attenuation mechanisms at different scales,which includes the microscopic squirt flow between the microcracks and pores,the mesoscopic wave-induced fluid flow between fractures and background(FB-WIFF),and the macroscopic Biot's global flow and elastic scattering(ES)from the fractures.Using Tang's modified Biot's theory and the mixed-boundary conditions,we derived the exact frequency-dependent solutions of the scattering problem for a single penny-shaped fracture with oblique incident P-and SV-waves.We then developed theoretical models for a set of aligned fractures and randomly oriented fractures using the Foldy approximation.The results indicated that microcrack squirt flow considerably influences the dispersion and attenuation of P-and SV-wave velocities.The coupling effects of microcrack squirt flow with the FB-WIFF and ES of fractures cause much higher velocity dispersion and attenuation for P waves than for SV waves.Randomly oriented fractures substantially reduce the attenuation caused by the FB-WIFF and ES,particularly for the ES attenuation of SV waves.Through a comparison with existing models in the limiting cases and previous experimental measurements,we validated our model.展开更多
We collect the isoseismal data of 488 earthquakes in western China and 182 earthquakes in eastern China after 1900.The least square method is used to establish two models of the seismic intensity attenuation relations...We collect the isoseismal data of 488 earthquakes in western China and 182 earthquakes in eastern China after 1900.The least square method is used to establish two models of the seismic intensity attenuation relationship partitions in China,based on the major and minor axis ellipse models,and the area and the major axis radius,respectively.The two models are applied to the calculation of the intensity circle of the earthquake events with a magnitude M_(S)≥5.0 from 2008 to 2019,and the actual intensity is compared with the model intensity value as an indicator to verify the consistency between the actual intensity and the value from the empirical statistical model.Three real earthquake results are selected to calculate the major and minor axis and area of the ellipse using the two intensity attenuation relationship models.After comparison,we summarize the deviation characteristics of the intensity value,and put forward corresponding improvement suggestions.展开更多
In view of the discrete characteristics of biological tissue, doublet mechanics has demonstrated its advantages in the mathematic description of tissue in terms of high frequency (〉 10 MHz) ultrasound. In this pape...In view of the discrete characteristics of biological tissue, doublet mechanics has demonstrated its advantages in the mathematic description of tissue in terms of high frequency (〉 10 MHz) ultrasound. In this paper, we take human breast biopsies as an example to study the influence of the internodal distance, a microscope parameter in biological tissue in doublet mechanics, on the sound velocity and attenuation by numerical simulation. The internodal distance causes the sound velocity and attenuation in biological tissue to change with the increase of frequency. The magnitude of such a change in pathological tissue is distinctly different from that in normal tissue, which can be used to differentiate pathological tissue from normal tissue and can depict the diseased tissue structure by obtaining the sound and attenuation distribution in the sample at high ultrasound frequency. A comparison of sensitivity between the doublet model and conventional continuum model is made, indicating that this is a new method of characterizing ultrasound tissue and diagnosing diseases.展开更多
Small earthquake data from the Pishan MS6.5 aftershocks is collected by the Xinjiang Regional Digital Seismic Observation Network.Five parameters of the focal region are obtained by micro genetic inversion:stress dro...Small earthquake data from the Pishan MS6.5 aftershocks is collected by the Xinjiang Regional Digital Seismic Observation Network.Five parameters of the focal region are obtained by micro genetic inversion:stress dropΔσof 75.95 bars,quality factor parameters Q0of 186.33 andηof 0.26,geometric attenuation parameters R1of 72.18km and R2of 139.70km.We calculate the Fourier spectrum and combine it with the random phase spectrum to get the ground motion time history,and build the strong motion acceleration attenuation relationship.The strong ground motion acceleration attenuation of the Pishan area is thus obtained.Because of the insufficiency of strong ground motion records,we added the records from the Wuqia MS6.9 earthquake on October 5,2008,the Akto MS6.2 earthquake on October 6,2008,and the Lop MS6.0 earthquake on March 9,2012 to the data.The comparison of the calculation results and the empirical attenuation relationships with strong ground motion records reveal that the strong motion data of Pishan and Lop earthquakes is higher than the empirical attenuation relationships.The Wuqia MS6.9 earthquake strong motion data is consistent with Yu Yanxiangs(2013)short axis result,and lower than the present result.展开更多
Rupture directivity effect causes spatial variation in strong ground motion parameters. It causes difference between the strike- normal (V.) and strike-parallel (Vp) components of horizontal ground motion amplitud...Rupture directivity effect causes spatial variation in strong ground motion parameters. It causes difference between the strike- normal (V.) and strike-parallel (Vp) components of horizontal ground motion amplitudes. These variations become significant for strong ground motion velocity and the authors have developed a modification to define directivity effect factor to account for the effect of rupture directivity in empirical velocity attenuation relations which are based on modeling Silakhor earthquake, using finite element method by ANSYS. The ground motion parameters that are modified include ratio of Vn/Vp component of horizontal velocity and Vn component to average horizontal velocity (V). The ratio of Vn to Vp is large in both the forward directivity direction, where velocity is larger, and in the backward directivity direction, where velocity is smaller. Therefore the authors expected that the Vn/Vp was mainly controlled by directivity angle. Also the variation of fault normal velocity to average horizontal velocity ratio by directivity angle (0) is defined from earthquake modeling. It shows Vn/V is controlled by directivity angle, distance between the site, epicenter and rupture length. This ratio has the same trend in Silakhor earthquake strong ground velocity data. In this paper the equation for Vn/Vp variations by directivity angle is recommended. The authors used Somervill et al. (1997) directivity model parameters as (R/L) cos2 ~ to define directivity effect on Vn/V ratio and therefore directivity factor is determined to account in near field empirical strong ground velocity attenuation relationships.展开更多
The attenuation relationship of ground motion based on seismology has always been a front subject of engineering earthquake.Among them,the regional finite-fault source model is very important.In view of this point,the...The attenuation relationship of ground motion based on seismology has always been a front subject of engineering earthquake.Among them,the regional finite-fault source model is very important.In view of this point,the general characteristics of regional seism-tectonics,including the dip and depth of the fault plane,are emphasized.According to the statistics of regional seism-tectonics and focal mechanisms in Sichuan,China,and the sensitivity of estimated peak ground acceleration(PGA)attenuation is analyzed,and the dip angle is taken as an average of 70°.Based the statistics of the upper crustal structure and the focal depth of regional earthquakes,the bottom boundary of the sedimentary cover can be used as the upper limit for estimating the depth of upper-edge.The analysis shows that this value is sensitive to PGA.Based on the analysis of geometric relations,the corresponding calculation formula is used,and a set of concepts and steps for building the regional finite-fault source model is proposed.The estimation of source parameters takes into account the uncertainty,the geometric relationship among parameters and the total energy conservation.Meanwhile,a set of reasonable models is developed,which lay a foundation for the further study of regional ground motion attenuation based on seismology.展开更多
Peninsular Malaysia is located and lies in a low seismic region. Although Malaysia is not located in the active fault seismic area, it is closed to the Sumatran active seismic zones. Tall building are fIequently felt ...Peninsular Malaysia is located and lies in a low seismic region. Although Malaysia is not located in the active fault seismic area, it is closed to the Sumatran active seismic zones. Tall building are fIequently felt the tremor generated fTom Sumatran subduction and fault zones especially in the west cost of Peninsular Malaysia such as Johor Bahru, Kuala Lumpur and Penang. Existing design response spectra was developed based on attenuation relationship for each subduction and fault zone. In this study, the design response spectra were developed based on various attenuation relationships for selected location in Kuala Lumpur area, namely, Mutiara Damansara, Bandar Petaling Jaya and Bandar Puteri Puchong. The development of design response spectra based on various attenuation relationships is more reliable in selecting the appropriate attenuation relationship for the study area. Seven attenuations have been chosen and results show that Megawati et al. are the most appropriate attenuation relation for fault zone, where the predicted PGA (peak ground acceleration) is 0.0187 g which is the proposed PGA value for this study area. This study also found that most of soil in the study area can be categorized into SD (stiff soil) according to site classification in the NEHRP 2000 Provision/UBC 97. Bandar petaling Jaya was found to be highest AF (amplification factor) of 3.74 for stiff soil and Mutiara Damansara with AF of 2.67 for very dense soil or soft rock. The proposed design response spectra for each location were developed based on UBC 1997 (Uniform Building Code 1997). The peak RSA (response spectrum acceleration) of 0.30 g for soil type SD for Bandar Petaling Jaya is the maximum level of acceleration on the soil surface with a period range of 0.10 to 0.52 seconds. All these values can be used for the seismic safety evaluation of existing structures and as a guideline in designing new structures to resist future earthquake, within the study area.展开更多
When the red laser illuminates the lyosol, the Tyndall effect will form a light path with a certain distance, and the optical properties of the lyosol will have a certain influence on the Tyndall light intensity. This...When the red laser illuminates the lyosol, the Tyndall effect will form a light path with a certain distance, and the optical properties of the lyosol will have a certain influence on the Tyndall light intensity. This paper mainly aims at the theoretical and experimental studies on the change situation of the lyosol concentration and the attenuation characteristics of the light path when the red laser changes with the distance of the light path in the solution. In order to study the effect of lyosol concentration on the Tyndall light path, digital image technology was applied to the measurement of lyosol concentration. Due to the non-contact property of the image, the liquid concentration can be measured accurately in real time. The attenuation characteristics of the laser in the lyosol were obtained by image processing technology, and the quantitative relationship between the attenuation coefficient of the Tyndall light path and the lyosol concentration was obtained.展开更多
基金Supported by the Special Research Project of the Capital’s Health Development,No.2024-3-7037and the Beijing Clinical Key Specialty Project.
文摘BACKGROUND The severity of nonalcoholic fatty liver disease(NAFLD)and lipid metabolism are related to the occurrence of colorectal polyps.Liver-controlled attenuation parameters(liver-CAPs)have been established to predict the prognosis of hepatic steatosis patients.AIM To explore the risk factors associated with colorectal polyps in patients with NAFLD by analyzing liver-CAPs and establishing a diagnostic model.METHODS Patients who were diagnosed with colorectal polyps in the Department of Gastroenterology of our hospital between June 2021 and April 2022 composed the case group,and those with no important abnormalities composed the control group.The area under the receiver operating characteristic curve was used to predict the diagnostic efficiency.Differences were considered statistically significant when P<0.05.RESULTS The median triglyceride(TG)and liver-CAP in the case group were significantly greater than those in the control group(mmol/L,1.74 vs 1.05;dB/m,282 vs 254,P<0.05).TG and liver-CAP were found to be independent risk factors for colorectal polyps,with ORs of 2.338(95%CI:1.154–4.733)and 1.019(95%CI:1.006–1.033),respectively(P<0.05).And there was no difference in the diagnostic efficacy between liver-CAP and TG combined with liver-CAP(TG+CAP)(P>0.05).When the liver-CAP was greater than 291 dB/m,colorectal polyps were more likely to occur.CONCLUSION The levels of TG and liver-CAP in patients with colorectal polyps are significantly greater than those patients without polyps.Liver-CAP alone can be used to diagnose NAFLD with colorectal polyps.
基金Science and Technology Development Fund of Macao SAR Government under Grant No.FDCT/012/2013/A1
文摘Prediction of peak ground acceleration is an essential element in engineering seismology and it has received great attention in last few decades. In this paper, a comprehensive database of the strong-motion records of the 2008 great Wenchuan Ms 8.0 earthquake is analyzed to investigate the seismic attenuation relationship and the directivity effects. In contrast to most existing seismic attenuation models, the proposed model considers explicitly the directivity effect which has primary influence on the magnitude of ground motion. Bayesian model updating is used to obtain the model parameters and the associated uncertainty. Comparative study is performed with the well-known Boore-Joyner-Fumal empirical formula. Results show that consideration of the directivity effect is vital in modeling the seismic attenuation relationship.
基金Research Committee of University of Macao under Research Grant No.MYRG081(Y1-L2)-FST13-YKVthe Science and Technology Development Fund of the Macao SAR government under Grant No.012/2013/A1
文摘Peak ground acceleration(PGA) estimation is an important task in earthquake engineering practice.One of the most well-known models is the Boore-Joyner-Fumal formula,which estimates the PGA using the moment magnitude,the site-to-fault distance and the site foundation properties.In the present study,the complexity for this formula and the homogeneity assumption for the prediction-error variance are investigated and an effi ciency-robustness balanced formula is proposed.For this purpose,a reduced-order Monte Carlo simulation algorithm for Bayesian model class selection is presented to obtain the most suitable predictive formula and prediction-error model for the seismic attenuation relationship.In this approach,each model class(a predictive formula with a prediction-error model) is evaluated according to its plausibility given the data.The one with the highest plausibility is robust since it possesses the optimal balance between the data fi tting capability and the sensitivity to noise.A database of strong ground motion records in the Tangshan region of China is obtained from the China Earthquake Data Center for the analysis.The optimal predictive formula is proposed based on this database.It is shown that the proposed formula with heterogeneous prediction-error variance is much simpler than the attenuation model suggested by Boore,Joyner and Fumal(1993).
基金supported by the Fundamental Research Funds for the Institute of Earthquake Forecas-ting,China Earthquake Administration(No.2021IEF0603)the Special Fund of the Institute of Geophysics,China Earthquake Administration(No.DQJB21B32).
文摘Seismic attenuation is a fundamental property of the Earth's media.Attenuation structure for the complicated geological structures with strong seismicity in the Sichuan-Yunnan region is poorly studied.In this study,we collected 108,399 waveforms of 11,517 local small earthquakes with magnitudes between 1.5 and 3.5 from January 2014 to September 2021 in the Sichuan-Yunnan region and its adjacent areas.We employed an envelope inversion technique for separating the intrinsic and scattering attenuations of the S coda wave,and obtained the intrinsic and scattering attenuation structures for frequencies between 0.25 and 8.00 Hz.The attenuation structures correlate well with the geological units,and some major faults mark the attenuation variations where historic large earthquakes have occurred.The regional average attenuation shows a negative frequency dependence.The average scattering attenuation has a faster descending rate than the average intrinsic attenuation,and is dominant at low frequencies,while at high frequencies the average intrinsic attenuation is stronger.The lateral variation in the intrinsic attenuation is consistent with the variation in heat flow,the scattering attenuation may be related to the scatter distribution and size.The total attenuation is consistent with the previous studies in this region,and the separate intrinsic and scattering attenuation may be useful in understanding regional tectonics and important in earthquake prevention and disaster reduction.
基金The authors would like to acknowledge financial support from NSFC Basic Research Program on Deep Petroleum Resource Accumulation and Key Engineering Technologies(U19B6003-04-03)National Natural Science Foundation of China(41930425)+2 种基金Beijing Natural Science Foundation(8222073),R&D Department of China National Petroleum Corporation(Investigations on fundamental experiments and advanced theoretical methods in geophysical prospecting applications,2022DQ0604-01)Scientific Research and Technology Development Project of PetroChina(2021DJ1206)National Key Research and Development Program of China(2018YFA0702504).
文摘Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and time-lapse seismic surveillance of both conventional and unconventional reservoir and overburden performances.A Seismic Elastic Moduli Module has been developed,based on the forced-oscillations method,to experimentally investigate the frequency dependence of Young's modulus and Poisson's ratio,as well as the inferred attenuation,of cylindrical samples under different confining pressure conditions.Calibration with three standard samples showed that the measured elastic moduli were consistent with the published data,indicating that the new apparatus can operate reliably over a wide frequency range of f∈[1-2000,10^(6)]Hz.The Young's modulus and Poisson's ratio of the shale and the tight sandstone samples were measured under axial stress oscillations to assess the frequency-and pressure-dependent effects.Under dry condition,both samples appear to be nearly frequency independent,with weak pressure dependence for the shale and significant pressure dependence for the sandstone.In particular,it was found that the tight sandstone with complex pore microstructure exhibited apparent dispersion and attenuation under brine or glycerin saturation conditions,the levels of which were strongly influenced by the increased effective pressure.In addition,the measured Young's moduli results were compared with the theoretical predictions from a scaled poroelastic model with a reasonably good agreement,revealing that the combined fluid flow mechanisms at both mesoscopic and microscopic scales possibly responsible for the measured dispersion.
基金funded by the Wenhai Program of the ST Fund of Laoshan Laboratory (No.202204803)the National Natural Science Foundation of China (Nos.42074138,42206195)+1 种基金the National Key R&D Program of China (No.2022YFC2803501)the Research Project of the China National Petroleum Corporation (No.2021ZG02)。
文摘The paper develops a multiple matching attenuation method based on extended filtering in the curvelet domain,which combines the traditional Wiener filtering method with the matching attenuation method in curvelet domain.Firstly,the method uses the predicted multiple data to generate the Hilbert transform records,time derivative records and time derivative records of Hilbert transform.Then,the above records are transformed into the curvelet domain and multiple matching attenuation based on least squares extended filtering is performed.Finally,the attenuation results are transformed back into the time-space domain.Tests on the model data and field data show that the method proposed in the paper effectively suppress the multiples while preserving the primaries well.Furthermore,it has higher accuracy in eliminating multiple reflections,which is more suitable for the multiple attenuation tasks in the areas with complex structures compared to the time-space domain extended filtering method and the conventional curvelet transform method.
基金Supports from National Natural Science Foundation of China(Grant Nos.U20A20286 and 11972184)the Systematic Project of Guangxi Key Laboratory of Disaster Prevention and Engineering Safety(Grant No.2021ZDK006)+1 种基金Natural Science Foundation of Jiangsu Province of China(Grant No.BK20201286)Science and Technology Project of Jiangsu Province of China(Grant No.BE2020716)are gratefully acknowledged.
文摘Combining periodic layered structure with three-dimensional cylindrical local resonators,a hybrid metastructure with improved wave isolation ability was designed and investigated through theoretical and numerical approaches.The metastructure is composed of periodic rubber layers and concrete layers embedded with three-dimensional resonators,which can be freely designed with multi local resonant frequencies to attenuate vibrations at required frequencies and widen the attenuation bandgap.The metastructure can also effectively attenuate seismic responses.Compared with layered rubber-based structures,the metastructure has more excellent wave attenuation effects with greater attenuation and wider bandgap.
基金supported by the National Natural Science Foundation of China (42274144,42304122,and 41974155)the Key Research and Development Program of Shaanxi (2023-YBGY-076)+1 种基金the National Key R&D Program of China (2020YFA0713404)the China Uranium Industry and East China University of Technology Joint Innovation Fund (NRE202107)。
文摘Time-frequency analysis is a successfully used tool for analyzing the local features of seismic data.However,it suffers from several inevitable limitations,such as the restricted time-frequency resolution,the difficulty in selecting parameters,and the low computational efficiency.Inspired by deep learning,we suggest a deep learning-based workflow for seismic time-frequency analysis.The sparse S transform network(SSTNet)is first built to map the relationship between synthetic traces and sparse S transform spectra,which can be easily pre-trained by using synthetic traces and training labels.Next,we introduce knowledge distillation(KD)based transfer learning to re-train SSTNet by using a field data set without training labels,which is named the sparse S transform network with knowledge distillation(KD-SSTNet).In this way,we can effectively calculate the sparse time-frequency spectra of field data and avoid the use of field training labels.To test the availability of the suggested KD-SSTNet,we apply it to field data to estimate seismic attenuation for reservoir characterization and make detailed comparisons with the traditional time-frequency analysis methods.
文摘Introduction: Computed tomography (CT) measurements of bone mineral attenuation may be a useful means to identify older women who should be prioritized for bone mineral density screening. Methods: We compared bone mineral attenuation as measured in the L1 vertebra of CT studies to the results of dual-energy x-ray absorptiometry (DEXA) studies to determine what CT attenuation thresholds might yield a reasonable combination of sensitivity and specificity for the detection of osteoporosis. The study was limited to women between the ages of 65 and 75 years who had a DEXA study and a CT that included the L1 or adjacent vertebra performed within 3 years of the DEXA study. Results: There were 1226 women in this study, of whom 452 (38%) had osteoporosis based on a T-score ≤ −2.5 by DEXA. There were 830 CT studies performed with contrast and 396 studies which were performed without contrast. There was a statistically significant difference in the mean HU of those studies performed without contrast compared to those with contrast (unenhanced mean 103 HU versus 125 HU, p < 0.001). Different CT attenuation thresholds provided the most appropriate combination of sensitivity and specificity for the detection of osteoporosis when comparing CT studies performed without or with IV contrast and when all the CT data were used in aggregate. Conclusion: Different thresholds appear necessary when using the mean CT vertebral attenuation to identify older women for preferential referral for DEXA studies.
基金Project supported by the National Natural Science Foundation of China (Nos. U2141244, 11932011,12393781, 12121002, and 12202267)supported by the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(No.SL2021ZD104)+4 种基金the Science and Technology Cooperation Project of Shanghai Jiao Tong University&Inner Mongolia Autonomous Region-Action Plan of Shanghai Jiao Tong University for“Science and Technology Prosperity”(No.2022XYJG0001-01-08)the Industryuniversity-research Cooperation Fund of Shanghai Academy of Spaceflight Technology(No.USCAST2021-11)Shanghai Pujiang Program(No.22PJ1405300)Young Talent Reservoir of CSTAM(No.CSTAM2022-XSC-QN1)the Starting Grant of Shanghai Jiao Tong University(No.WH220402014).
文摘Broadband vibration attenuation is a challenging task in engineering since it is difficult to achieve low-frequency and broadband vibration control simultaneously.To solve this problem,this paper designs a piezoelectric meta-beam with unidirectional electric circuits,exhibiting promising broadband attenuation capabilities.An analytical model in a closed form for achieving the solution of unidirectional vibration transmission of the designed meta-beam is developed based on the state-space transfer function method.The method can analyze the forward and backward vibration transmission of the piezoelectric meta-beam in a unified manner,providing reliable dynamics solutions of the beam.The analytical results indicate that the meta-beam effectively reduces the unidirectional vibration across a broad low-frequency range,which is also verified by the solutions obtained from finite element analyses.The designed meta-beam and the proposed analytical method facilitate a comprehensive investigation into the distinctive unidirectional transmission behavior and superb broadband vibration attenuation performance.
基金financially supported by the National Key Research and Development Program of China(2023YFC3208501)the National Natural Science Foundation of China(Grant Nos.U2340225,51979172)+2 种基金the Nanjing Hydraulic Research Institute Special Fund for Basic Scientific Research of Central Public Research Institutes(Y223002,Y220013)the CRSRI Open Research Program(Grant No.CKWV20221007/KY)the Post-Three Gorges Sediment Research Project of MWR(ProjectⅢ:Impact and Countermeasures of the Three Gorges Project on the Stability of the Shoal and Channel and Habitat of Yangtze River Estuary)。
文摘A set of laboratory experiments are carried out to investigate the effect of following/opposing currents on wave attenuation.Rigid vegetation canopies with aligned and staggered configurations were tested under the condition of various regular wave heights and current velocities,with the constant water depth being 0.60 m to create the desired submerged scenarios.Results show that the vegetation-induced wave dissipation is enhanced with the increasing incident wave height.A larger velocity magnititude leads to a greater wave height attenuation for both following and opposing current conditions.Moreover,there is a strong positive linear correlation between the damping coefficientβand the relative wave height H_(0)/h,especially for pure wave conditions.For the velocity profile,the distributions of U_(min)and U_(max)show different patterns under combined wave and current.The time-averaged turbulent kinetic energy(TKE)vary little under pure wave and U_(c)=±0.05 m/s conditions.With the increase of flow velocity amplitude,the time-averaged TKE shows a particularly pronounced increase trend at the top of the canopy.The vegetation drag coefficients are obtained by a calibration approach.The empirical relations of drag coefficient with Reynolds and Keulegane-Carpenter numbers are proposed to further understand the wave-current-vegetation interaction mechanism.
基金This work was supported by the Laoshan National Laboratory Science and Technology Innovation Project(No.LSKJ202203407)the National Natural Science Foundation of China(Grant Nos.42174145,41821002,42274146)+1 种基金Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology(2022B1212010002)Shenzhen Stable Support Plan Program for Higher Education Institutions(20220815110144003).
文摘P-and SV-wave dispersion and attenuation have been extensively investigated in saturated poroelastic media with aligned fractures.However,there are few existing models that incorporate the multiple wave attenuation mechanisms from the microscopic scale to the macroscopic scale.Hence,in this work,we developed a unified model to incorporate the wave attenuation mechanisms at different scales,which includes the microscopic squirt flow between the microcracks and pores,the mesoscopic wave-induced fluid flow between fractures and background(FB-WIFF),and the macroscopic Biot's global flow and elastic scattering(ES)from the fractures.Using Tang's modified Biot's theory and the mixed-boundary conditions,we derived the exact frequency-dependent solutions of the scattering problem for a single penny-shaped fracture with oblique incident P-and SV-waves.We then developed theoretical models for a set of aligned fractures and randomly oriented fractures using the Foldy approximation.The results indicated that microcrack squirt flow considerably influences the dispersion and attenuation of P-and SV-wave velocities.The coupling effects of microcrack squirt flow with the FB-WIFF and ES of fractures cause much higher velocity dispersion and attenuation for P waves than for SV waves.Randomly oriented fractures substantially reduce the attenuation caused by the FB-WIFF and ES,particularly for the ES attenuation of SV waves.Through a comparison with existing models in the limiting cases and previous experimental measurements,we validated our model.
基金sponsored by the special fund of the Institute of earthquake forecasting,China Earthquake Administration(2020LNEF03)China Earthquake Networks Center Youth Fund(QNJJ202105).
文摘We collect the isoseismal data of 488 earthquakes in western China and 182 earthquakes in eastern China after 1900.The least square method is used to establish two models of the seismic intensity attenuation relationship partitions in China,based on the major and minor axis ellipse models,and the area and the major axis radius,respectively.The two models are applied to the calculation of the intensity circle of the earthquake events with a magnitude M_(S)≥5.0 from 2008 to 2019,and the actual intensity is compared with the model intensity value as an indicator to verify the consistency between the actual intensity and the value from the empirical statistical model.Three real earthquake results are selected to calculate the major and minor axis and area of the ellipse using the two intensity attenuation relationship models.After comparison,we summarize the deviation characteristics of the intensity value,and put forward corresponding improvement suggestions.
基金Project supported by the National Basic Research Program of China(Grant Nos.2012CB921504 and 2011CB707902)the National Natural Science Foundation of China(Grant No.11274166)+3 种基金the Fundamental Research Funds for the Central Universities,China(Grant Nos.1113020403 and 1101020402)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA201401)the China Postdoctoral Science Foundation(Grant No.2013M531313)the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions and Scientific Research Foundation for Returned Overseas Chinese Scholars,State Education Ministry,and the Project of Interdisciplinary Center of Nanjing University,China(Grant No.NJUDC2012004)
文摘In view of the discrete characteristics of biological tissue, doublet mechanics has demonstrated its advantages in the mathematic description of tissue in terms of high frequency (〉 10 MHz) ultrasound. In this paper, we take human breast biopsies as an example to study the influence of the internodal distance, a microscope parameter in biological tissue in doublet mechanics, on the sound velocity and attenuation by numerical simulation. The internodal distance causes the sound velocity and attenuation in biological tissue to change with the increase of frequency. The magnitude of such a change in pathological tissue is distinctly different from that in normal tissue, which can be used to differentiate pathological tissue from normal tissue and can depict the diseased tissue structure by obtaining the sound and attenuation distribution in the sample at high ultrasound frequency. A comparison of sensitivity between the doublet model and conventional continuum model is made, indicating that this is a new method of characterizing ultrasound tissue and diagnosing diseases.
基金jointly sponsored by “The Ground Motion Attenuation Relationship Based on Seismology and Its Practicability” of the National Natural Science Foundation of China(51178434)“With Digital Ride Network Small Earthquake Records to Establish Regional Strong Ground Motion Attenuation Relations”from the National Natural Science Foundation of China(51478443)“Based on the Regional Parameters of Mixed Ground Motion Attenuation Relationship”from the National Natural Science Foundation of China(51678540)
文摘Small earthquake data from the Pishan MS6.5 aftershocks is collected by the Xinjiang Regional Digital Seismic Observation Network.Five parameters of the focal region are obtained by micro genetic inversion:stress dropΔσof 75.95 bars,quality factor parameters Q0of 186.33 andηof 0.26,geometric attenuation parameters R1of 72.18km and R2of 139.70km.We calculate the Fourier spectrum and combine it with the random phase spectrum to get the ground motion time history,and build the strong motion acceleration attenuation relationship.The strong ground motion acceleration attenuation of the Pishan area is thus obtained.Because of the insufficiency of strong ground motion records,we added the records from the Wuqia MS6.9 earthquake on October 5,2008,the Akto MS6.2 earthquake on October 6,2008,and the Lop MS6.0 earthquake on March 9,2012 to the data.The comparison of the calculation results and the empirical attenuation relationships with strong ground motion records reveal that the strong motion data of Pishan and Lop earthquakes is higher than the empirical attenuation relationships.The Wuqia MS6.9 earthquake strong motion data is consistent with Yu Yanxiangs(2013)short axis result,and lower than the present result.
文摘Rupture directivity effect causes spatial variation in strong ground motion parameters. It causes difference between the strike- normal (V.) and strike-parallel (Vp) components of horizontal ground motion amplitudes. These variations become significant for strong ground motion velocity and the authors have developed a modification to define directivity effect factor to account for the effect of rupture directivity in empirical velocity attenuation relations which are based on modeling Silakhor earthquake, using finite element method by ANSYS. The ground motion parameters that are modified include ratio of Vn/Vp component of horizontal velocity and Vn component to average horizontal velocity (V). The ratio of Vn to Vp is large in both the forward directivity direction, where velocity is larger, and in the backward directivity direction, where velocity is smaller. Therefore the authors expected that the Vn/Vp was mainly controlled by directivity angle. Also the variation of fault normal velocity to average horizontal velocity ratio by directivity angle (0) is defined from earthquake modeling. It shows Vn/V is controlled by directivity angle, distance between the site, epicenter and rupture length. This ratio has the same trend in Silakhor earthquake strong ground velocity data. In this paper the equation for Vn/Vp variations by directivity angle is recommended. The authors used Somervill et al. (1997) directivity model parameters as (R/L) cos2 ~ to define directivity effect on Vn/V ratio and therefore directivity factor is determined to account in near field empirical strong ground velocity attenuation relationships.
基金National Natural Science Foundation of China(51678540,51778197)Heilongjiang Province Key Research and Development Program Guidance Project of China(GZ20220028)+2 种基金Heilongjiang Bayi Agricultural University Support Program for San Heng San Zong(ZRCPY202225)Heilongjiang Bayi Agricultural University Project of Scientific Research Initiation Plan for Learning and Introducing Talents of China(XYB2014-06)Daqing Science and Technology Plan Project of China(zd-2021-86).
文摘The attenuation relationship of ground motion based on seismology has always been a front subject of engineering earthquake.Among them,the regional finite-fault source model is very important.In view of this point,the general characteristics of regional seism-tectonics,including the dip and depth of the fault plane,are emphasized.According to the statistics of regional seism-tectonics and focal mechanisms in Sichuan,China,and the sensitivity of estimated peak ground acceleration(PGA)attenuation is analyzed,and the dip angle is taken as an average of 70°.Based the statistics of the upper crustal structure and the focal depth of regional earthquakes,the bottom boundary of the sedimentary cover can be used as the upper limit for estimating the depth of upper-edge.The analysis shows that this value is sensitive to PGA.Based on the analysis of geometric relations,the corresponding calculation formula is used,and a set of concepts and steps for building the regional finite-fault source model is proposed.The estimation of source parameters takes into account the uncertainty,the geometric relationship among parameters and the total energy conservation.Meanwhile,a set of reasonable models is developed,which lay a foundation for the further study of regional ground motion attenuation based on seismology.
文摘Peninsular Malaysia is located and lies in a low seismic region. Although Malaysia is not located in the active fault seismic area, it is closed to the Sumatran active seismic zones. Tall building are fIequently felt the tremor generated fTom Sumatran subduction and fault zones especially in the west cost of Peninsular Malaysia such as Johor Bahru, Kuala Lumpur and Penang. Existing design response spectra was developed based on attenuation relationship for each subduction and fault zone. In this study, the design response spectra were developed based on various attenuation relationships for selected location in Kuala Lumpur area, namely, Mutiara Damansara, Bandar Petaling Jaya and Bandar Puteri Puchong. The development of design response spectra based on various attenuation relationships is more reliable in selecting the appropriate attenuation relationship for the study area. Seven attenuations have been chosen and results show that Megawati et al. are the most appropriate attenuation relation for fault zone, where the predicted PGA (peak ground acceleration) is 0.0187 g which is the proposed PGA value for this study area. This study also found that most of soil in the study area can be categorized into SD (stiff soil) according to site classification in the NEHRP 2000 Provision/UBC 97. Bandar petaling Jaya was found to be highest AF (amplification factor) of 3.74 for stiff soil and Mutiara Damansara with AF of 2.67 for very dense soil or soft rock. The proposed design response spectra for each location were developed based on UBC 1997 (Uniform Building Code 1997). The peak RSA (response spectrum acceleration) of 0.30 g for soil type SD for Bandar Petaling Jaya is the maximum level of acceleration on the soil surface with a period range of 0.10 to 0.52 seconds. All these values can be used for the seismic safety evaluation of existing structures and as a guideline in designing new structures to resist future earthquake, within the study area.
文摘When the red laser illuminates the lyosol, the Tyndall effect will form a light path with a certain distance, and the optical properties of the lyosol will have a certain influence on the Tyndall light intensity. This paper mainly aims at the theoretical and experimental studies on the change situation of the lyosol concentration and the attenuation characteristics of the light path when the red laser changes with the distance of the light path in the solution. In order to study the effect of lyosol concentration on the Tyndall light path, digital image technology was applied to the measurement of lyosol concentration. Due to the non-contact property of the image, the liquid concentration can be measured accurately in real time. The attenuation characteristics of the laser in the lyosol were obtained by image processing technology, and the quantitative relationship between the attenuation coefficient of the Tyndall light path and the lyosol concentration was obtained.