Peninsular Malaysia is located and lies in a low seismic region. Although Malaysia is not located in the active fault seismic area, it is closed to the Sumatran active seismic zones. Tall building are fIequently felt ...Peninsular Malaysia is located and lies in a low seismic region. Although Malaysia is not located in the active fault seismic area, it is closed to the Sumatran active seismic zones. Tall building are fIequently felt the tremor generated fTom Sumatran subduction and fault zones especially in the west cost of Peninsular Malaysia such as Johor Bahru, Kuala Lumpur and Penang. Existing design response spectra was developed based on attenuation relationship for each subduction and fault zone. In this study, the design response spectra were developed based on various attenuation relationships for selected location in Kuala Lumpur area, namely, Mutiara Damansara, Bandar Petaling Jaya and Bandar Puteri Puchong. The development of design response spectra based on various attenuation relationships is more reliable in selecting the appropriate attenuation relationship for the study area. Seven attenuations have been chosen and results show that Megawati et al. are the most appropriate attenuation relation for fault zone, where the predicted PGA (peak ground acceleration) is 0.0187 g which is the proposed PGA value for this study area. This study also found that most of soil in the study area can be categorized into SD (stiff soil) according to site classification in the NEHRP 2000 Provision/UBC 97. Bandar petaling Jaya was found to be highest AF (amplification factor) of 3.74 for stiff soil and Mutiara Damansara with AF of 2.67 for very dense soil or soft rock. The proposed design response spectra for each location were developed based on UBC 1997 (Uniform Building Code 1997). The peak RSA (response spectrum acceleration) of 0.30 g for soil type SD for Bandar Petaling Jaya is the maximum level of acceleration on the soil surface with a period range of 0.10 to 0.52 seconds. All these values can be used for the seismic safety evaluation of existing structures and as a guideline in designing new structures to resist future earthquake, within the study area.展开更多
Four recently developed attenuation models are calibrated by using a very limited amount of strong motion data recorded in China.The research shows that the attenuation characteristics of the earthquake shaking in nor...Four recently developed attenuation models are calibrated by using a very limited amount of strong motion data recorded in China.The research shows that the attenuation characteristics of the earthquake shaking in northern China are similar to those in the western US.The supporting evidence includes Q factors,preliminary results of kappa values,stress drop, shear wave velocity profile in the shallow earth crust,areas enclosed by the isoseismals of Modified Mercalli Intensity V.From these comparison,s of different attenuation models,it is recommended that the Crouse and McGuire spectral attenuation model could possibly be used for northern China.展开更多
The measurement errors due to nonparallelness of specimen faces in the ultrasonic velocity and attenuation coefficient measured by the pulse reflection method in VHF range have been investigated theoretically, and the...The measurement errors due to nonparallelness of specimen faces in the ultrasonic velocity and attenuation coefficient measured by the pulse reflection method in VHF range have been investigated theoretically, and the theoretical expressions for estimating these measurement errors are given. It has also been shown that, the attenuation coefficient error is depending on both the nonparallelness angle of specimen faces and the ultrasonic frequency, but the velocity error is only depending on the former. Furthermore, for pure silica glass specimen it is estimated that, in VHF range in order to insure that the attenuation coefficient and velocity errors due to nonparallelness of specimen faces are less than 10% and 0.01%, respectively, the nonparallelness angle of specimen faces must be less than 10 s and 40 s correspondingly.展开更多
On the basis of an introduction of the Wigner Higher-Order spectra (WHOS) and a general class of time-frequency higher-order moment spectra, the geophysical signal was analyzed using the higher order time-frequency di...On the basis of an introduction of the Wigner Higher-Order spectra (WHOS) and a general class of time-frequency higher-order moment spectra, the geophysical signal was analyzed using the higher order time-frequency distributions (TFD). Simulation results obtained in this paper show that the higher-order TFD (Wigner Bispectrum, Wigner Trispectrum and Choi-Williams Trispectrum) have much better Time-Frequency Concentration than the second-order TFD, and the reduced interference higher-order TFD such as CWT can effectively reduce the cross-term in multicomponent signals and simultaneously obtain high time-frequency concentration.展开更多
This paper presents a methodology for constructing seismic design spectra in near-fault regions. By analyzing the characteristics of near-fault pulse-type ground motions, an equivalent pulse model is proposed, which c...This paper presents a methodology for constructing seismic design spectra in near-fault regions. By analyzing the characteristics of near-fault pulse-type ground motions, an equivalent pulse model is proposed, which can well represent the characteristics of the near-fault forward-directivity and fling-step pulse-type ground motions. The normalized horizontal seismic design spectra for near-fault regions are presented using recorded near-fault pulse-type ground motions and equivalent pulse-type ground motions, which are derived based on the equivalent pulse model coupled with ground motion parameter attenuation relations. The normalized vertical seismic design spectra for near-fault regions are obtained by scaling the corresponding horizontal spectra with the vertical-to-horizontal acceleration spectral ratios of near-fault pulse-type ground motions. The proposed seismic design spectra appear to have relatively small dispersion in a statistical sense. The seismic design spectra for both horizontal and vertical directions can provide alternative spectral shapes for seismic design codes.展开更多
Based on 266 strong ground motion records, an attenuation relationship was developed for both absolute and relative input energy spectra. The comparison of the two kinds of input energy spectra constructed from the at...Based on 266 strong ground motion records, an attenuation relationship was developed for both absolute and relative input energy spectra. The comparison of the two kinds of input energy spectra constructed from the attenuation relationship was made in this paper. The results show that there is little difference between the absolute input energy spectra and relative input energy spectra at the periods of 0.5-1.0 s for elastic systems and at the period of 0.5 s for inelastic systems. The absolute input energy spectra are much larger than relative input energy spectra in very short period range but some less than relative input energy spectra in long period range. It is also found that the ductility factor has a significant effect on both absolute and relative input energy spectra. The absolute input energy spectra increase with the increasing of ductility factor in the period range of less than 0.3 s but decrease in the period range of larger than 0.3 s. The absolute input energy spectra for different ductility factor are almost equivalent at the period about 0.3 s, but for relative input energy spectra, the period is about 0.5 s. The effect of ductility on the relative input energy spectra in the short period range is much larger than that on the absolute input energy spectra, especially on the softer site class.展开更多
This review gives a short introduction into the principles of ultrasonic measurement techniques for liquids, using cavity resonators. Guidelines for the resonator design in broad-band ultrasonic stxctroscopy as well a...This review gives a short introduction into the principles of ultrasonic measurement techniques for liquids, using cavity resonators. Guidelines for the resonator design in broad-band ultrasonic stxctroscopy as well as in high-resolution single-frequncy or narrowband applications are presented. Deviations of the field configuration in real cells frtxn that in an ideal resonator are discussed and relations for the mode spectrum of cavity fields are given. Recent resonator measurement procedures and methods of data evaluation are mentioned briefly. Some examples of measurements show the extended usability of ultrasonic resonator techniques in basic science and in a wide range of applications for rrkaterials characterization, in manufacturing processes, as well as in control routines.展开更多
Transmission data for 12 MV bremsstrahlung beams produced by the process for continuous-pulsed 12 MV electrons coming from a linear accelerator hitting a 1.2mm thick plane tantalum target have been acquired with a com...Transmission data for 12 MV bremsstrahlung beams produced by the process for continuous-pulsed 12 MV electrons coming from a linear accelerator hitting a 1.2mm thick plane tantalum target have been acquired with a combination of iron and Telfon attenuators. Two solid state dosimeters with LiF-TLD material surrounded Telfon were used as detectors. It has been checked that the experimental system achieves reasonably narrow-beam geometry by Monte Carlo simulations. From these transmission data, the original energy photon spectrum has been reconstructed using the iterative least-squares technique and compared with the spectrum calculated with Monte Carlo code system EGSnrc. The comparison shows that the numerical technique for analysis of transmission data can represent 12 MV bremsstrahlung spectrum acceptably well. The purpose of our work is to provide an effective way to reconstruct an unknown photon spectrum with high energy component and prove the correctness of this way.展开更多
The ultrasonic, magnetic and transport properties of Nd0.5Ca0.5Mn1-xAlxO3 (x=0, 0.03) were studied from 15 to 300 K. The temperature dependencies of resistivity and magnetization show that Nd0.5Ca0.5MnO3 undergoes a...The ultrasonic, magnetic and transport properties of Nd0.5Ca0.5Mn1-xAlxO3 (x=0, 0.03) were studied from 15 to 300 K. The temperature dependencies of resistivity and magnetization show that Nd0.5Ca0.5MnO3 undergoes a charge ordering transition at TCO-257 K. An obvious softening of the longitudinal sound velocity above TCO and a dramatic stiffening below Too accompanied by an attenuation peak were observed. These features imply a strong electron phonom interaction via the Jahn-Teller effect iu the sample, Another broad attenuation peak was observed at around Tp-80 K. This anomaly is attributed to the phase separtion between the antiferromagnetic (AFM) and paramagnetic (PM) phases and gives a direct evidence for spin-phonon coupling in the compound. For the x=0.03 sample, both the minimum of sound velocity and attenuation peaks shift to a lower temperature. The results indicate that the charge ordering and CE-type AFM state in Nd0.5Ca0.5MnO3 are both partially suppressed by replacing Mn with A1.展开更多
Study of nanofluids is important for different types of heat transfer management systems. Cupric oxide nanoparticles (CuO NPs) were prepared by the chemical route and different nanofluid samples of CuO NPs dispersed i...Study of nanofluids is important for different types of heat transfer management systems. Cupric oxide nanoparticles (CuO NPs) were prepared by the chemical route and different nanofluid samples of CuO NPs dispersed in PVA in dif- ferent concentrations were prepared using ultrasonication. The apparatus acoustic particle sizer (APS-100) was used to make high precision measurements of the ultrasonic attenuation depending upon different frequencies in the frequency range 48 to 99 MHz. The ultrasonic attenuation data are inverted to particle size distribution (PSD) and are used for particle size determination of CuO NPs. Temperature dependent ultrasonic velocity in the samples is also measured. The results of ultrasonic spectroscopy are compared with the microscopic measurements such as transmission electron microscopy (TEM) and X-ray diffraction (XRD). There is good agreement between data produced by ultrasonic spec- troscopy and the microscopic measurements.展开更多
By means of ultrasonic attenuation apparatus, the ultrasonic velocity and attenuation ofanhydride-cured epoxy resins (EP)/poly (ethylene oxide) (PEO) blends were measured on thebasis of pulse-echo method. It was found...By means of ultrasonic attenuation apparatus, the ultrasonic velocity and attenuation ofanhydride-cured epoxy resins (EP)/poly (ethylene oxide) (PEO) blends were measured on thebasis of pulse-echo method. It was found that the sonic velocity of the blends decreased as thetemperature increased, but attenuation coefficient increased and possessed a peak value. Largervelocity and smaller attenuation coefficient(α)can be obtained from perfect crosslinking networkstructures of pure DGEBA cured with phthalic anhydride(PA). As for cured DGEBA/PEO blendsystems,sonic velocity decreased as a function of PEO concentration,but attenuation coefficient(α) increased.展开更多
The longitudinal ultrasonic velocity (V1), attenuation (α1), magnetization and resistivity of single phase polycrystalline La1/3Sr2/3CoO3 were measured as a function of temperature from 20 K to 300 K. The resisti...The longitudinal ultrasonic velocity (V1), attenuation (α1), magnetization and resistivity of single phase polycrystalline La1/3Sr2/3CoO3 were measured as a function of temperature from 20 K to 300 K. The resistivity shows metallic behavior in the whole temperature range and a kink at 235 K was observed, which coincides with the ferromagnetic transition temperature (Tc). As the temperature cools down from Tc, the V1 softens conspicuously at beginning and reaches a minimum at 120 K. After that the V1 dramatically stiffens below 120 K accompanied by a wide attenuation peak. The analysis of the results suggests that these ultrasonic anomalies ;nay correspond to local lattice distortions via the Jahn-Teller effect of intermediate spin Co^3+.展开更多
Drilling fluid is a common flushing medium used in pile foundation, geological drilling and petroleum drilling. Study on ultrasonic propagation properties in drilling fluid is of vital importance, not only for develop...Drilling fluid is a common flushing medium used in pile foundation, geological drilling and petroleum drilling. Study on ultrasonic propagation properties in drilling fluid is of vital importance, not only for developing equipments to non-contact measuring concrete casting level for bored pile, but also for developing equip- ments considering drilling fluid as signal channel. The existence of clay particles makes the ultrasonic propagation and attenuation in drilling fluid much different from pure water. In order to know the relation among ultrasound frequency, slun-y density and depth, a series of laboratory experiments about ultrasound propagation in water-based bentonite slurry were finished. Wavelet method was adopted to process the gained original waves of ultrasonic propagation in slurry, so we knew the velocity and attenuation coefficient of ultrasound propagated in different drilling fluids with different density. The first group experiments shows that with density of drilling fluid increase, ultrasonic velocity will decrease but attenuation coefficient will increase if ultrasonic frequency keep constant. The second group experiments shows that the power of ultrasound will intensify in small bore hole, the attenuation coefficient is much smaller than theoretical value.展开更多
文摘Peninsular Malaysia is located and lies in a low seismic region. Although Malaysia is not located in the active fault seismic area, it is closed to the Sumatran active seismic zones. Tall building are fIequently felt the tremor generated fTom Sumatran subduction and fault zones especially in the west cost of Peninsular Malaysia such as Johor Bahru, Kuala Lumpur and Penang. Existing design response spectra was developed based on attenuation relationship for each subduction and fault zone. In this study, the design response spectra were developed based on various attenuation relationships for selected location in Kuala Lumpur area, namely, Mutiara Damansara, Bandar Petaling Jaya and Bandar Puteri Puchong. The development of design response spectra based on various attenuation relationships is more reliable in selecting the appropriate attenuation relationship for the study area. Seven attenuations have been chosen and results show that Megawati et al. are the most appropriate attenuation relation for fault zone, where the predicted PGA (peak ground acceleration) is 0.0187 g which is the proposed PGA value for this study area. This study also found that most of soil in the study area can be categorized into SD (stiff soil) according to site classification in the NEHRP 2000 Provision/UBC 97. Bandar petaling Jaya was found to be highest AF (amplification factor) of 3.74 for stiff soil and Mutiara Damansara with AF of 2.67 for very dense soil or soft rock. The proposed design response spectra for each location were developed based on UBC 1997 (Uniform Building Code 1997). The peak RSA (response spectrum acceleration) of 0.30 g for soil type SD for Bandar Petaling Jaya is the maximum level of acceleration on the soil surface with a period range of 0.10 to 0.52 seconds. All these values can be used for the seismic safety evaluation of existing structures and as a guideline in designing new structures to resist future earthquake, within the study area.
基金The Hong Kong Polytechnic University,and partly supported by NSFC (Grant No.59678048)
文摘Four recently developed attenuation models are calibrated by using a very limited amount of strong motion data recorded in China.The research shows that the attenuation characteristics of the earthquake shaking in northern China are similar to those in the western US.The supporting evidence includes Q factors,preliminary results of kappa values,stress drop, shear wave velocity profile in the shallow earth crust,areas enclosed by the isoseismals of Modified Mercalli Intensity V.From these comparison,s of different attenuation models,it is recommended that the Crouse and McGuire spectral attenuation model could possibly be used for northern China.
文摘The measurement errors due to nonparallelness of specimen faces in the ultrasonic velocity and attenuation coefficient measured by the pulse reflection method in VHF range have been investigated theoretically, and the theoretical expressions for estimating these measurement errors are given. It has also been shown that, the attenuation coefficient error is depending on both the nonparallelness angle of specimen faces and the ultrasonic frequency, but the velocity error is only depending on the former. Furthermore, for pure silica glass specimen it is estimated that, in VHF range in order to insure that the attenuation coefficient and velocity errors due to nonparallelness of specimen faces are less than 10% and 0.01%, respectively, the nonparallelness angle of specimen faces must be less than 10 s and 40 s correspondingly.
基金Supported by the National Natural Science Foundation of China( 4 990 40 10 )
文摘On the basis of an introduction of the Wigner Higher-Order spectra (WHOS) and a general class of time-frequency higher-order moment spectra, the geophysical signal was analyzed using the higher order time-frequency distributions (TFD). Simulation results obtained in this paper show that the higher-order TFD (Wigner Bispectrum, Wigner Trispectrum and Choi-Williams Trispectrum) have much better Time-Frequency Concentration than the second-order TFD, and the reduced interference higher-order TFD such as CWT can effectively reduce the cross-term in multicomponent signals and simultaneously obtain high time-frequency concentration.
基金Special Scientific Research Fund of Earthquake Profession of China under Grant No.201208013National Natural Science Foundation of China under Grant No.51238012
文摘This paper presents a methodology for constructing seismic design spectra in near-fault regions. By analyzing the characteristics of near-fault pulse-type ground motions, an equivalent pulse model is proposed, which can well represent the characteristics of the near-fault forward-directivity and fling-step pulse-type ground motions. The normalized horizontal seismic design spectra for near-fault regions are presented using recorded near-fault pulse-type ground motions and equivalent pulse-type ground motions, which are derived based on the equivalent pulse model coupled with ground motion parameter attenuation relations. The normalized vertical seismic design spectra for near-fault regions are obtained by scaling the corresponding horizontal spectra with the vertical-to-horizontal acceleration spectral ratios of near-fault pulse-type ground motions. The proposed seismic design spectra appear to have relatively small dispersion in a statistical sense. The seismic design spectra for both horizontal and vertical directions can provide alternative spectral shapes for seismic design codes.
基金Natural Science Foundation of Heilongjiang Province (E0221)Commonweal Foundation of the Ministry of Science and Technology of China (2001DIB20098).
文摘Based on 266 strong ground motion records, an attenuation relationship was developed for both absolute and relative input energy spectra. The comparison of the two kinds of input energy spectra constructed from the attenuation relationship was made in this paper. The results show that there is little difference between the absolute input energy spectra and relative input energy spectra at the periods of 0.5-1.0 s for elastic systems and at the period of 0.5 s for inelastic systems. The absolute input energy spectra are much larger than relative input energy spectra in very short period range but some less than relative input energy spectra in long period range. It is also found that the ductility factor has a significant effect on both absolute and relative input energy spectra. The absolute input energy spectra increase with the increasing of ductility factor in the period range of less than 0.3 s but decrease in the period range of larger than 0.3 s. The absolute input energy spectra for different ductility factor are almost equivalent at the period about 0.3 s, but for relative input energy spectra, the period is about 0.5 s. The effect of ductility on the relative input energy spectra in the short period range is much larger than that on the absolute input energy spectra, especially on the softer site class.
文摘This review gives a short introduction into the principles of ultrasonic measurement techniques for liquids, using cavity resonators. Guidelines for the resonator design in broad-band ultrasonic stxctroscopy as well as in high-resolution single-frequncy or narrowband applications are presented. Deviations of the field configuration in real cells frtxn that in an ideal resonator are discussed and relations for the mode spectrum of cavity fields are given. Recent resonator measurement procedures and methods of data evaluation are mentioned briefly. Some examples of measurements show the extended usability of ultrasonic resonator techniques in basic science and in a wide range of applications for rrkaterials characterization, in manufacturing processes, as well as in control routines.
文摘Transmission data for 12 MV bremsstrahlung beams produced by the process for continuous-pulsed 12 MV electrons coming from a linear accelerator hitting a 1.2mm thick plane tantalum target have been acquired with a combination of iron and Telfon attenuators. Two solid state dosimeters with LiF-TLD material surrounded Telfon were used as detectors. It has been checked that the experimental system achieves reasonably narrow-beam geometry by Monte Carlo simulations. From these transmission data, the original energy photon spectrum has been reconstructed using the iterative least-squares technique and compared with the spectrum calculated with Monte Carlo code system EGSnrc. The comparison shows that the numerical technique for analysis of transmission data can represent 12 MV bremsstrahlung spectrum acceptably well. The purpose of our work is to provide an effective way to reconstruct an unknown photon spectrum with high energy component and prove the correctness of this way.
基金supported by the National Natural Science Foundation of China(No.10274075)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20030358056).
文摘The ultrasonic, magnetic and transport properties of Nd0.5Ca0.5Mn1-xAlxO3 (x=0, 0.03) were studied from 15 to 300 K. The temperature dependencies of resistivity and magnetization show that Nd0.5Ca0.5MnO3 undergoes a charge ordering transition at TCO-257 K. An obvious softening of the longitudinal sound velocity above TCO and a dramatic stiffening below Too accompanied by an attenuation peak were observed. These features imply a strong electron phonom interaction via the Jahn-Teller effect iu the sample, Another broad attenuation peak was observed at around Tp-80 K. This anomaly is attributed to the phase separtion between the antiferromagnetic (AFM) and paramagnetic (PM) phases and gives a direct evidence for spin-phonon coupling in the compound. For the x=0.03 sample, both the minimum of sound velocity and attenuation peaks shift to a lower temperature. The results indicate that the charge ordering and CE-type AFM state in Nd0.5Ca0.5MnO3 are both partially suppressed by replacing Mn with A1.
文摘Study of nanofluids is important for different types of heat transfer management systems. Cupric oxide nanoparticles (CuO NPs) were prepared by the chemical route and different nanofluid samples of CuO NPs dispersed in PVA in dif- ferent concentrations were prepared using ultrasonication. The apparatus acoustic particle sizer (APS-100) was used to make high precision measurements of the ultrasonic attenuation depending upon different frequencies in the frequency range 48 to 99 MHz. The ultrasonic attenuation data are inverted to particle size distribution (PSD) and are used for particle size determination of CuO NPs. Temperature dependent ultrasonic velocity in the samples is also measured. The results of ultrasonic spectroscopy are compared with the microscopic measurements such as transmission electron microscopy (TEM) and X-ray diffraction (XRD). There is good agreement between data produced by ultrasonic spec- troscopy and the microscopic measurements.
文摘By means of ultrasonic attenuation apparatus, the ultrasonic velocity and attenuation ofanhydride-cured epoxy resins (EP)/poly (ethylene oxide) (PEO) blends were measured on thebasis of pulse-echo method. It was found that the sonic velocity of the blends decreased as thetemperature increased, but attenuation coefficient increased and possessed a peak value. Largervelocity and smaller attenuation coefficient(α)can be obtained from perfect crosslinking networkstructures of pure DGEBA cured with phthalic anhydride(PA). As for cured DGEBA/PEO blendsystems,sonic velocity decreased as a function of PEO concentration,but attenuation coefficient(α) increased.
基金This work was supported by the National Natural Science Foundation of China (No.10774136).
文摘The longitudinal ultrasonic velocity (V1), attenuation (α1), magnetization and resistivity of single phase polycrystalline La1/3Sr2/3CoO3 were measured as a function of temperature from 20 K to 300 K. The resistivity shows metallic behavior in the whole temperature range and a kink at 235 K was observed, which coincides with the ferromagnetic transition temperature (Tc). As the temperature cools down from Tc, the V1 softens conspicuously at beginning and reaches a minimum at 120 K. After that the V1 dramatically stiffens below 120 K accompanied by a wide attenuation peak. The analysis of the results suggests that these ultrasonic anomalies ;nay correspond to local lattice distortions via the Jahn-Teller effect of intermediate spin Co^3+.
文摘Drilling fluid is a common flushing medium used in pile foundation, geological drilling and petroleum drilling. Study on ultrasonic propagation properties in drilling fluid is of vital importance, not only for developing equipments to non-contact measuring concrete casting level for bored pile, but also for developing equip- ments considering drilling fluid as signal channel. The existence of clay particles makes the ultrasonic propagation and attenuation in drilling fluid much different from pure water. In order to know the relation among ultrasound frequency, slun-y density and depth, a series of laboratory experiments about ultrasound propagation in water-based bentonite slurry were finished. Wavelet method was adopted to process the gained original waves of ultrasonic propagation in slurry, so we knew the velocity and attenuation coefficient of ultrasound propagated in different drilling fluids with different density. The first group experiments shows that with density of drilling fluid increase, ultrasonic velocity will decrease but attenuation coefficient will increase if ultrasonic frequency keep constant. The second group experiments shows that the power of ultrasound will intensify in small bore hole, the attenuation coefficient is much smaller than theoretical value.