Quatemions complementary filter attitude algorithm was conducted on the unmanned aerial vehicle (UAV) platform. This introduces traditional attitude algorithm and attitude quaternion complementary filter algorithm d...Quatemions complementary filter attitude algorithm was conducted on the unmanned aerial vehicle (UAV) platform. This introduces traditional attitude algorithm and attitude quaternion complementary filter algorithm difference, and the attitude quatemion complementary filter algorithm realization are introduced in details展开更多
Taking the accelerometer installation errors into consideration, the attitude optimization algorithm of Gyro Free Inertial Meastement Unit (GFIMU) is studied in the high spinning condition in this paper. A ten-accel...Taking the accelerometer installation errors into consideration, the attitude optimization algorithm of Gyro Free Inertial Meastement Unit (GFIMU) is studied in the high spinning condition in this paper. A ten-accelerometer configuration is designed so as to establish a mathematical model to acquire the angular speeds in the case of installation errors. Precision of the algorithm is evaluated by using damping GaussNewton method. A large amotmt of sinmlation results show that ff the accelertlmter's angleinstallation errors main-tain small (〈5°), the errors of attitude angles can be limited within ±1°. Hence, the algorithm has a great applicable value in engineering.展开更多
This article proposes a new inner attitude integration algorithm to improve attitude accuracy of the strapdown inertial attitude and heading reference system (SIAHRS) , which, by means of a Kalman filter, integrates...This article proposes a new inner attitude integration algorithm to improve attitude accuracy of the strapdown inertial attitude and heading reference system (SIAHRS) , which, by means of a Kalman filter, integrates the calculated attitude from the accelerometers in inertial measuring unit (IMU) , called damping attitudes, with those from the conventional IMU. As vehicle' s acceleration could produce damping attitude errors, the horizontal outputs from accelerometers are firstly used to judge the vehicle' s motion so as to determine whether the damping attitudes could be reasonably applied. This article also analyzes the limitation of this approach. Furthermore, it suggests a residual chi-square test to judge the validity of damping attitude measurement in real time, and accordingly puts forward proper information fusion strategy. Finally,the effectiveness of the proposed algorithm is proved through the experiments on a real system in dynamic and static states.展开更多
基金supported by the National Science and Technology(2015BAK06B04)
文摘Quatemions complementary filter attitude algorithm was conducted on the unmanned aerial vehicle (UAV) platform. This introduces traditional attitude algorithm and attitude quaternion complementary filter algorithm difference, and the attitude quatemion complementary filter algorithm realization are introduced in details
基金supported by National Key Laboratory for Electronic Measurement and Technology(No.9140C120401080C12)
文摘Taking the accelerometer installation errors into consideration, the attitude optimization algorithm of Gyro Free Inertial Meastement Unit (GFIMU) is studied in the high spinning condition in this paper. A ten-accelerometer configuration is designed so as to establish a mathematical model to acquire the angular speeds in the case of installation errors. Precision of the algorithm is evaluated by using damping GaussNewton method. A large amotmt of sinmlation results show that ff the accelertlmter's angleinstallation errors main-tain small (〈5°), the errors of attitude angles can be limited within ±1°. Hence, the algorithm has a great applicable value in engineering.
基金Aeronautical Science Foundation of China(20080852011,20070852009)
文摘This article proposes a new inner attitude integration algorithm to improve attitude accuracy of the strapdown inertial attitude and heading reference system (SIAHRS) , which, by means of a Kalman filter, integrates the calculated attitude from the accelerometers in inertial measuring unit (IMU) , called damping attitudes, with those from the conventional IMU. As vehicle' s acceleration could produce damping attitude errors, the horizontal outputs from accelerometers are firstly used to judge the vehicle' s motion so as to determine whether the damping attitudes could be reasonably applied. This article also analyzes the limitation of this approach. Furthermore, it suggests a residual chi-square test to judge the validity of damping attitude measurement in real time, and accordingly puts forward proper information fusion strategy. Finally,the effectiveness of the proposed algorithm is proved through the experiments on a real system in dynamic and static states.