This paper presents a scheme of fault diagnosis for flexible satellites during orbit maneuver. The main contribution of the paper is related to the design of the nonlinear input observer which can avoid false alarm ar...This paper presents a scheme of fault diagnosis for flexible satellites during orbit maneuver. The main contribution of the paper is related to the design of the nonlinear input observer which can avoid false alarm arising from the disturbance from orbit control force. The effects of orbit control force on the fault diagnosis system for satellite attitude control systems, including the disturbing torque caused by the misalignments and the model uncertainty caused by the fuel consumed, are discussed, where standard Lu- enberger observer cannot work well. Then the nonlinear unknown input observer is proposed to decouple faults from disturbance, Besides, a linear matrix inequality approach is adopted to reduce the effect of nonlinear part and model uncertainties on the observer. The numerical and semi-physical simulation demonstrates the effectiveness of the proposed observer for the fault diagnosis system of the satellite during orbit maneuver.展开更多
A robust attitude control methodology is proposed for satellite system with double rotary payloads. The dynamic model is built by the Newton-Euler method and then the dynamic interconneetion between satellite's main ...A robust attitude control methodology is proposed for satellite system with double rotary payloads. The dynamic model is built by the Newton-Euler method and then the dynamic interconneetion between satellite's main body and payloads is described precisely. A nonlinear disturbance observer is designed for satellite's main body to estimate disturbance torque acted by motion of payloads. Meanwhile, the adaptive fast nonsingular terminal sliding-mode attitude stabilization controller is proposed for satellite's main body to quicken convergence speed of state variables. Similarly, the adaptive fast nonsingular terminal sliding-mode attitude maneuver controller is designed for each payload to weaken the disturbance effect of motion of satellite's main body. Simulation results verify the effectiveness of the proposed method.展开更多
A new longitudinal attitude control system design for an unmanned seaplane in the severe sea states is presented in this paper. We develop a nonlinear passive observer, which is used to achieve wave filtering and stat...A new longitudinal attitude control system design for an unmanned seaplane in the severe sea states is presented in this paper. We develop a nonlinear passive observer, which is used to achieve wave filtering and state estimation. Moreover, the observer can be extended to achieve adaptive wave filtering in varying sea states. Using the estimated low-frequency states, a backstepping sliding mode controller is designed to keep the longitudinal attitude of the unmanned seaplane stable. The stability of the total closed loop system is analyzed by using Lyapunov theory. Simulations are performed in different wave conditions, including Seastate 3 and Seastate 5. The simulations results show that the proposed longitudinal attitude controller can improve the anti-waves capability effectively. Moreover, adaptive wave filter has a significant advantage over a filter with fixed model parameters in varying sea states.展开更多
基金supported by the National Natural Science Foundation of China (61034005)the Natural Science Foundation of Jiangsu Province (BK2010072)
文摘This paper presents a scheme of fault diagnosis for flexible satellites during orbit maneuver. The main contribution of the paper is related to the design of the nonlinear input observer which can avoid false alarm arising from the disturbance from orbit control force. The effects of orbit control force on the fault diagnosis system for satellite attitude control systems, including the disturbing torque caused by the misalignments and the model uncertainty caused by the fuel consumed, are discussed, where standard Lu- enberger observer cannot work well. Then the nonlinear unknown input observer is proposed to decouple faults from disturbance, Besides, a linear matrix inequality approach is adopted to reduce the effect of nonlinear part and model uncertainties on the observer. The numerical and semi-physical simulation demonstrates the effectiveness of the proposed observer for the fault diagnosis system of the satellite during orbit maneuver.
基金supported by the National Natural Science Foundation of China(No.91016017)the Funding of Jiangsu Innovation Program for Graduate Education (No. CXZZ12_0160)+1 种基金the Natural Science Foundation of Jiangsu Province of China(No.BK20130234)the Changzhou Sci.& Tech.Program (CE20145056)
文摘A robust attitude control methodology is proposed for satellite system with double rotary payloads. The dynamic model is built by the Newton-Euler method and then the dynamic interconneetion between satellite's main body and payloads is described precisely. A nonlinear disturbance observer is designed for satellite's main body to estimate disturbance torque acted by motion of payloads. Meanwhile, the adaptive fast nonsingular terminal sliding-mode attitude stabilization controller is proposed for satellite's main body to quicken convergence speed of state variables. Similarly, the adaptive fast nonsingular terminal sliding-mode attitude maneuver controller is designed for each payload to weaken the disturbance effect of motion of satellite's main body. Simulation results verify the effectiveness of the proposed method.
基金supported by National Natural Science Foundation of China(Nos.61273336,61203003,61273149 and 61421004)the Innovation Method Fund of China(No.2012IM010200)
文摘A new longitudinal attitude control system design for an unmanned seaplane in the severe sea states is presented in this paper. We develop a nonlinear passive observer, which is used to achieve wave filtering and state estimation. Moreover, the observer can be extended to achieve adaptive wave filtering in varying sea states. Using the estimated low-frequency states, a backstepping sliding mode controller is designed to keep the longitudinal attitude of the unmanned seaplane stable. The stability of the total closed loop system is analyzed by using Lyapunov theory. Simulations are performed in different wave conditions, including Seastate 3 and Seastate 5. The simulations results show that the proposed longitudinal attitude controller can improve the anti-waves capability effectively. Moreover, adaptive wave filter has a significant advantage over a filter with fixed model parameters in varying sea states.