An extended Kalman filter with adaptive gain was used to build a miniature attitude and heading reference system based on a stochastie model. The adaptive filter has six states with a time variable transition matrix. ...An extended Kalman filter with adaptive gain was used to build a miniature attitude and heading reference system based on a stochastie model. The adaptive filter has six states with a time variable transition matrix. When the system is in the non-acceleration mode, the accelerometer measurements of the gravity and the compass measurements of the heading have observability and yield good eslimates of the states. When the system is in the high dynamic mode and the bias has converged to an aceurate estimate, the attitude caleulation will be maintained for a long interval of time. The adaptive filter tunes its gain automatically based on the system dynamics sensed by the accelerometers to yield optimal performance,展开更多
MEMS (micro electro mechanical systems) inertial navigation system ~, Mll'~3) nas Been WllUly used in robots for its low-cost. The MINS and magnetometers are commonly the component parts of the attitude and headin...MEMS (micro electro mechanical systems) inertial navigation system ~, Mll'~3) nas Been WllUly used in robots for its low-cost. The MINS and magnetometers are commonly the component parts of the attitude and heading reference systems (AHRS), which provide pitch and roll angles relative to the earth gravity vector, and heading angle relative to the north. However, the performance of sen- sors with low cost AHRS is not so good. The gyros are not sensitive enough to observe the earth an- gular velocity, so the traditional technique like alignment algorithm is invalid. The measurements of gyros become useless to determine the initial attitude matrix from navigation frame to body frame. The alignment algorithm is computed by the accelerometers and magnetometers. The process is es- tablished as an optimization problem of finding the maximum eigenvector. Meanwhile the sensitive analysis with respect to the biases of accelerometers is proposed. Then the recursive least squares al- gorithm (RLSA) is introduced. The comparison between the proposed method and RLSA is provid- ed. The results demonstrate its accuracy favorably and verify the feasibility of the proposed algo- rithm.展开更多
Attitude references are greatly needed for the evaluation and calibration of Inertial Navigation Systems(INSs),which are widely used in gravimeter,marine,and aeronautical navigation.High-accuracy turntable,INS,and Glo...Attitude references are greatly needed for the evaluation and calibration of Inertial Navigation Systems(INSs),which are widely used in gravimeter,marine,and aeronautical navigation.High-accuracy turntable,INS,and Global Navigation Satellite System have been utilized to verify the performance of relatively low-accuracy INS.The accuracy requirement of the attitude reference continuously increases with the rapid improvement of inertial sensors and navigation algorithms.However,the cost of attitude determination system increases rapidly with the increase of attitude accuracy requirement.To solve this limitation,the integration of level meter,INS,and low-cost turntable is proposed to provide level attitude,such as roll and pitch.The turntable is utilized to rotate the INS.An integration model of the level meter and INS is built to estimate the level attitude and reduce the cost of the turntable.The proposed method successfully avoids the dependence on high-accuracy turntables.An observability degree analysis is conducted to improve the level atti-tude accuracy further.The simulation and turntable test results indicate that the proposed method can provide high-accuracy level attitude without high-accuracy INS or turntable and is applicable to error calibration and attitude evaluation of INS.展开更多
This article proposes a new inner attitude integration algorithm to improve attitude accuracy of the strapdown inertial attitude and heading reference system (SIAHRS) , which, by means of a Kalman filter, integrates...This article proposes a new inner attitude integration algorithm to improve attitude accuracy of the strapdown inertial attitude and heading reference system (SIAHRS) , which, by means of a Kalman filter, integrates the calculated attitude from the accelerometers in inertial measuring unit (IMU) , called damping attitudes, with those from the conventional IMU. As vehicle' s acceleration could produce damping attitude errors, the horizontal outputs from accelerometers are firstly used to judge the vehicle' s motion so as to determine whether the damping attitudes could be reasonably applied. This article also analyzes the limitation of this approach. Furthermore, it suggests a residual chi-square test to judge the validity of damping attitude measurement in real time, and accordingly puts forward proper information fusion strategy. Finally,the effectiveness of the proposed algorithm is proved through the experiments on a real system in dynamic and static states.展开更多
A current statistical model for maneuvering acceleration using an adaptive extended Kalman filter(CS-MAEKF) algorithm is proposed to solve problems existing in conventional extended Kalman filters such as large esti...A current statistical model for maneuvering acceleration using an adaptive extended Kalman filter(CS-MAEKF) algorithm is proposed to solve problems existing in conventional extended Kalman filters such as large estimation error and divergent tendencies in the presence of continuous maneuvering acceleration. A membership function is introduced in this algorithm to adaptively modify the upper and lower limits of loitering vehicles' maneuvering acceleration and for realtime adjustment of maneuvering acceleration variance. This allows the algorithm to have superior static and dynamic performance for loitering vehicles undergoing different maneuvers. Digital simulations and dynamic flight testing show that the yaw angle accuracy of the algorithm is 30% better than conventional algorithms, and pitch and roll angle calculation precision is improved by 60%.The mean square deviation of heading and attitude angle error during dynamic flight is less than3.05°. Experimental results show that CS-MAEKF meets the application requirements of miniature loitering vehicles.展开更多
文摘An extended Kalman filter with adaptive gain was used to build a miniature attitude and heading reference system based on a stochastie model. The adaptive filter has six states with a time variable transition matrix. When the system is in the non-acceleration mode, the accelerometer measurements of the gravity and the compass measurements of the heading have observability and yield good eslimates of the states. When the system is in the high dynamic mode and the bias has converged to an aceurate estimate, the attitude caleulation will be maintained for a long interval of time. The adaptive filter tunes its gain automatically based on the system dynamics sensed by the accelerometers to yield optimal performance,
基金Supported by the National Natural Science Foundation of China(No.60905056)
文摘MEMS (micro electro mechanical systems) inertial navigation system ~, Mll'~3) nas Been WllUly used in robots for its low-cost. The MINS and magnetometers are commonly the component parts of the attitude and heading reference systems (AHRS), which provide pitch and roll angles relative to the earth gravity vector, and heading angle relative to the north. However, the performance of sen- sors with low cost AHRS is not so good. The gyros are not sensitive enough to observe the earth an- gular velocity, so the traditional technique like alignment algorithm is invalid. The measurements of gyros become useless to determine the initial attitude matrix from navigation frame to body frame. The alignment algorithm is computed by the accelerometers and magnetometers. The process is es- tablished as an optimization problem of finding the maximum eigenvector. Meanwhile the sensitive analysis with respect to the biases of accelerometers is proposed. Then the recursive least squares al- gorithm (RLSA) is introduced. The comparison between the proposed method and RLSA is provid- ed. The results demonstrate its accuracy favorably and verify the feasibility of the proposed algo- rithm.
基金supported by the National Natural Science Foundation of China(No.62073184).
文摘Attitude references are greatly needed for the evaluation and calibration of Inertial Navigation Systems(INSs),which are widely used in gravimeter,marine,and aeronautical navigation.High-accuracy turntable,INS,and Global Navigation Satellite System have been utilized to verify the performance of relatively low-accuracy INS.The accuracy requirement of the attitude reference continuously increases with the rapid improvement of inertial sensors and navigation algorithms.However,the cost of attitude determination system increases rapidly with the increase of attitude accuracy requirement.To solve this limitation,the integration of level meter,INS,and low-cost turntable is proposed to provide level attitude,such as roll and pitch.The turntable is utilized to rotate the INS.An integration model of the level meter and INS is built to estimate the level attitude and reduce the cost of the turntable.The proposed method successfully avoids the dependence on high-accuracy turntables.An observability degree analysis is conducted to improve the level atti-tude accuracy further.The simulation and turntable test results indicate that the proposed method can provide high-accuracy level attitude without high-accuracy INS or turntable and is applicable to error calibration and attitude evaluation of INS.
基金Aeronautical Science Foundation of China(20080852011,20070852009)
文摘This article proposes a new inner attitude integration algorithm to improve attitude accuracy of the strapdown inertial attitude and heading reference system (SIAHRS) , which, by means of a Kalman filter, integrates the calculated attitude from the accelerometers in inertial measuring unit (IMU) , called damping attitudes, with those from the conventional IMU. As vehicle' s acceleration could produce damping attitude errors, the horizontal outputs from accelerometers are firstly used to judge the vehicle' s motion so as to determine whether the damping attitudes could be reasonably applied. This article also analyzes the limitation of this approach. Furthermore, it suggests a residual chi-square test to judge the validity of damping attitude measurement in real time, and accordingly puts forward proper information fusion strategy. Finally,the effectiveness of the proposed algorithm is proved through the experiments on a real system in dynamic and static states.
文摘A current statistical model for maneuvering acceleration using an adaptive extended Kalman filter(CS-MAEKF) algorithm is proposed to solve problems existing in conventional extended Kalman filters such as large estimation error and divergent tendencies in the presence of continuous maneuvering acceleration. A membership function is introduced in this algorithm to adaptively modify the upper and lower limits of loitering vehicles' maneuvering acceleration and for realtime adjustment of maneuvering acceleration variance. This allows the algorithm to have superior static and dynamic performance for loitering vehicles undergoing different maneuvers. Digital simulations and dynamic flight testing show that the yaw angle accuracy of the algorithm is 30% better than conventional algorithms, and pitch and roll angle calculation precision is improved by 60%.The mean square deviation of heading and attitude angle error during dynamic flight is less than3.05°. Experimental results show that CS-MAEKF meets the application requirements of miniature loitering vehicles.