In recent years,China’s landscaping projects have developed vigorously,and the growth rate of urban garden green space areas has been maintained at about 5%.Overall,with the development of the national economy and th...In recent years,China’s landscaping projects have developed vigorously,and the growth rate of urban garden green space areas has been maintained at about 5%.Overall,with the development of the national economy and the support of macro policies,people’s demand for close to nature and beautify the environment is gradually increasing,which has brought new growth momentum for the development of the landscaping industry.Simultaneously,from the perspective of future economic development and urban development,the landscaping industry still has a lot of room for development.However,with the rapid development of landscape engineering,the problem of cost control of landscape engineering is becoming more prominent,the phenomenon of budget overestimation is common,and there are many factors affecting the cost of landscape engineering,which brings difficulties and challenges to the analysis of its influencing factors and cost management.How to scientifically analyze the influencing factors and control the cost has become an important link in the landscaping project.To solve the above problems,this paper takes the design stage of landscaping engineering as the background,takes the design estimate of landscaping engineering as the research object,through literature research and data collection,fully excavates the main influencing factors of the design estimate stage of landscaping engineering,analyzes the key points of cost control,and provides reference ideas and directions for the later cost management and control.展开更多
The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compe...The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compensator based on functional link neural network is used to deal with the engine nonlinearity and the hardware-in-loop simulation is also developed. The results show that the nonlinear MRAC controller has the adequate performance of compensating and adapting nonlinearity arising from the change of engine state or working environment. Such feature demonstrates potential practical applications of MRAC for aeroengine control system.展开更多
Aim To control the noise of two stroke engine Methods On the basis of noise identification,a new muffler and acoustic shield were designed,Results the car's pass-by noise below the national limit Conclusion throug...Aim To control the noise of two stroke engine Methods On the basis of noise identification,a new muffler and acoustic shield were designed,Results the car's pass-by noise below the national limit Conclusion through proper noise controlling measures,the pass-by noise of two stroke engines could be reduced under national permitting limit.展开更多
In order to sample the speed signal of electronic diesel engine in real time and make the engine work reliable, the diesel engine control system's speed acquisition was studied and the problem of speed disturbance...In order to sample the speed signal of electronic diesel engine in real time and make the engine work reliable, the diesel engine control system's speed acquisition was studied and the problem of speed disturbance was solved. The control system was based on the 8?bit electronic control unit(ECU) system and the assembly language was used to design the software for controlling the engine fuel quantity and the turbocharger of the variable geometry turbine for the heavy duty diesel engine. By changing the timing method for speed acquisition, the problem of speed disturbance was solved and the reliability of the ECU was improved.展开更多
According to advantages of neural network and characteristics of operatingprocedures of engine, a new strategy is represented on the control of fuel injection and ignitiontiming of gasoline engine based on improved BP...According to advantages of neural network and characteristics of operatingprocedures of engine, a new strategy is represented on the control of fuel injection and ignitiontiming of gasoline engine based on improved BP network algorithm. The optimum ignition advance angleand fuel injection pulse band of engine under different speed and load are tested for the samplestraining network, focusing on the study of the design method and procedure of BP neural network inengine injection and ignition control. The results show that artificial neural network technique canmeet the requirement of engine injection and ignition control. The method is feasible for improvingpower performance, economy and emission performances of gasoline engine.展开更多
This paper proposes a new loop recovery method to solve the reduced order problem of H∞/ LTR method. The resulted lower order controller shares almost the same performance and robustness as the original H ∞/LTR cont...This paper proposes a new loop recovery method to solve the reduced order problem of H∞/ LTR method. The resulted lower order controller shares almost the same performance and robustness as the original H ∞/LTR controller. Further more, this paper develops a new order reduction method: slow-fast mode order reduction (SFMOR) method. This order reduction method is particularly effective for those controllers whose modes can be divided into a slow part and a fast part according to their velocities. Application of these methods to a benchmark example and a certain turbofan engine is described.展开更多
A decentralized model reference adaptive control (MRAC) scheme is proposed and applied to design a multivariable control system of a dual-spool turbofan engine.Simulation studies show good static and dynamic performan...A decentralized model reference adaptive control (MRAC) scheme is proposed and applied to design a multivariable control system of a dual-spool turbofan engine.Simulation studies show good static and dynamic performance of the system over the fullflight envelope. Simulation results also show the good effectiveness of reducing interactionin the multivariable system with significant coupling. The control system developed has awide frequency band to satisfy the strict engineering requirement and is practical for engineering applications.展开更多
A fault tolerant control methodology based adaptive sliding mode(ASM) backstepping is proposed for near space vehicle(NSV) attitude control system under engine faults. The proposed scheme combined adaptive backsteppin...A fault tolerant control methodology based adaptive sliding mode(ASM) backstepping is proposed for near space vehicle(NSV) attitude control system under engine faults. The proposed scheme combined adaptive backstepping with the sliding mode control strategy could guarantee the system’s stability and track desired signals under external disturbances and engine faults. Firstly, attitude mode description and the engine faulty model are given. Secondly, a nominal control law is designed.Thirdly, a sliding mode observer is given later in order to estimate both the information of engine faults and external disturbances. An adaptive sliding mode technology based on the previous nominal control law is developed via updating faulty parameters. Finally,analyze the system’s fault-tolerant performance and reliability through experiment simulation, which verifies the proposed design of fault-tolerant control can tolerate engine faults, as well as the strong robustness for external disturbance.展开更多
In this paper, the control problem of auxiliary power unit (APU) for hybrid electric vehicles is investigated. An adaptive controller is provided to achieve the coordinated control between the engine speed and the b...In this paper, the control problem of auxiliary power unit (APU) for hybrid electric vehicles is investigated. An adaptive controller is provided to achieve the coordinated control between the engine speed and the battery charging voltage. The proposed adaptive coordinated control laws for the throttle angle of the engine and the voltage of the power-converter can guarantee not only the asymptotic tracking performance of the engine speed and the regulation of the battery charging voltage, but also the robust stability of the closed loop system under external load changes. Simulation results are given to verify the performance of the proposed adaptive controller.展开更多
The continuous cooling transformation of hot deformation austenite austenite of test steel and the effect of different processing schedules of controlled rolling and controlled cooling on the strength and ductility ha...The continuous cooling transformation of hot deformation austenite austenite of test steel and the effect of different processing schedules of controlled rolling and controlled cooling on the strength and ductility have been studied. The theory and the experiment base are presented for controlled rolling and controlled cooling of the SBL micro alloyed engineering steel.展开更多
In order to improve the cold start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about th...In order to improve the cold start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about the partial working processes of the diesel engine, the amount of heat energy, enough to make the fuel self ignite at the end of compression process at different temperatures of coolant and intake air, was calculated. Several HY20 preheating plugs were used to heat up the intake air. Meanwhile, an electronic control system based on 8 bit micro controller unit (MCS 8031) was designed to automatically control the process of heating intake air. According to the various temperatures of coolant and ambient air, one plug or two plugs can automatically be selected to heat intake air. The demo experiment validated that the total system could operate successfully and achieve the scheduled function.展开更多
A variable nozzle turbocharger (VNT) was applied to a 2.2-liter L4 natural gas engine,and a VNT control system was designed to operate it.Based on VNT matching test results,a VNT control strategy was studied,in whic...A variable nozzle turbocharger (VNT) was applied to a 2.2-liter L4 natural gas engine,and a VNT control system was designed to operate it.Based on VNT matching test results,a VNT control strategy was studied,in which VNT adjustment is carried out through pre-calibrated VNT handling rod position,combined with a closed-loop target boost pressure feedback using proportional-integral-derivative(PID) algorithm.Experimental results showed that the VNT control system presented in this thesis can lead to optimized performance of VNT,increase engine volumetric efficiency over a wide speed range,improve engine dynamic characteristics and upgrade economic performance.展开更多
A simulation model of an electronically controlled two solenoid valve fuel injection system for a diesel engine is established in the AMESim environment.The accuracy of the model is validated through comparison with e...A simulation model of an electronically controlled two solenoid valve fuel injection system for a diesel engine is established in the AMESim environment.The accuracy of the model is validated through comparison with experimental data.The influence of pre-injection control parameters on main-injection quantity under different control modes is analyzed.In the spill control valve mode,main-injection fuel quantity decreases gradually and then reaches a stable level because of the increase in multi-injection dwell time.In the needle control valve mode,main-injection fuel quantity increases with rising multi-injection dwell time;this effect becomes more obvious at high-speed revolutions and large main-injection pulse widths.Pre-injection pulse width has no obvious influence on main-injection quantity under the two control modes;the variation in main-injection quantity is in the range of 1 mm3.展开更多
A hardware-in-the-loop simulating platform is developed to avoid designing defects caused by the complicated logical structure and multiple-functional buildup of the dectronic control unit(ECU)in modem diesel engine...A hardware-in-the-loop simulating platform is developed to avoid designing defects caused by the complicated logical structure and multiple-functional buildup of the dectronic control unit(ECU)in modem diesel engines, and to diminish potential damages on components or human exposure to dangers in R&D en- deavor. This plat-form consists of a computer installed with software Matlab/Simulink/RTW and dSPACE/ ControlDesk; a diesel engine ECU, and a dSPACE autobox which runs a real-time diesel engine model. A typical model of diesel engine with turbocharger and intercooler is presented. Based on this model our research is carried out with a real ECU to test its software control strategies. Results show that by using the diesel engine model downloaded inside, the hardware-in-the-loop platform can simulate diesel engine's working conditions and generate all kinds of sensor signals which ECU needs on a real-time basis. So the ECU control strategies can be validated and relevant parameters roughly calibrated.展开更多
For homogeneous charge compression ignition (HCCI) combustion, the auto-ignition process is very sensitive to in-cylinder conditions, including in-cylinder temperature, in-cylinder components and concentrations. The...For homogeneous charge compression ignition (HCCI) combustion, the auto-ignition process is very sensitive to in-cylinder conditions, including in-cylinder temperature, in-cylinder components and concentrations. Therefore, accurate control is required for reliable and efficient HCCI combustion. This paper outlines a simplified gasoline-fueled HCCI engine model implemented in Simulink environment. The model is able to run in real-time and with fixed simulation steps with the aim of cycle-to-cycle control and hardware- in-the-loop simulation. With the aim of controlling the desired amount of the trapped exhaust gas recirculation (EGR) from the previous cycle, the phase of the intake and exhaust valves and the respective profiles are designed to vary in this model. The model is able to anticipate the auto-ignition timing and the in-cylinder pressure and temperature. The validation has been conducted using a comparison of the experimental results on Ricardo Hydro engine published in a research by Tianjin University and a JAGUAR V6 HCCI test engine at the University of Birmingham. The comparison shows the typical HCCI combustion and a fair agreement between the simulation and experimental results.展开更多
A three-way catalyst comprised novel oxygen storage components for emission control in natural gas powered engines was prepared. The addition of novel oxygen storage components to the Pd/γ-Al2O3 catalysts resulted ...A three-way catalyst comprised novel oxygen storage components for emission control in natural gas powered engines was prepared. The addition of novel oxygen storage components to the Pd/γ-Al2O3 catalysts resulted in improved activities of the fresh and aged catalyst by lowering the light-off temperature for methane in natural gas engines exhaust.展开更多
Traditional studies on integrated statistical process control and engineering process control (SPC-EPC) are based on linear autoregressive integrated moving average (ARIMA) time series models to describe the dynamic n...Traditional studies on integrated statistical process control and engineering process control (SPC-EPC) are based on linear autoregressive integrated moving average (ARIMA) time series models to describe the dynamic noise of the system.However,linear models sometimes are unable to model complex nonlinear autocorrelation.To solve this problem,this paper presents an integrated SPC-EPC method based on smooth transition autoregressive (STAR) time series model,and builds a minimum mean squared error (MMSE) controller as well as an integrated SPC-EPC control system.The performance of this method for checking the trend and sustained shift is analyzed.The simulation results indicate that this integrated SPC-EPC control method based on STAR model is effective in controlling complex nonlinear systems.展开更多
In a hybrid system, the subsystems with discrete dynamics play a central role in a hybrid system. In the course of engineering machinery of cluster construction, the discrete control law is hard to obtain because the ...In a hybrid system, the subsystems with discrete dynamics play a central role in a hybrid system. In the course of engineering machinery of cluster construction, the discrete control law is hard to obtain because the construction environment is complex and there exist many affecting factors. In this paper, hierarchically intelligent control, expert control and fuzzy control are introduced into the discrete subsystems of engineering machinery of cluster hybrid system, so as to rebuild the hybrid system and make the discrete control law easily and effectively obtained. The structures, reasoning mechanism and arithmetic of intelligent control are replanted to discrete dynamic, conti- nuous process and the interface of the hybrid system. The structures of three types of intelligent hybrid system are presented and the human experiences summarized from engineering machinery of cluster are taken into account.展开更多
In this paper;the dynamic characteristics of a semi-active magnetorheological fluid(MRF)engine mount are studied.To do so,the performance of the MRF engine mount is experimentally examined in higher frequencies(50~170...In this paper;the dynamic characteristics of a semi-active magnetorheological fluid(MRF)engine mount are studied.To do so,the performance of the MRF engine mount is experimentally examined in higher frequencies(50~170 Hz)and the various amplitudes(0.01~0.2 mm).In such an examination,an MRF engine mount along with its magnetically biased is fabricated and successfully measured.In addition,the natural frequencies of the system are obtained by standard hammer modal test.For modelling the behavior of the system,a mass-spring-damper model with tuned PID coefficients based on Pessen integral of absolute error method is used.The parameters of such a model including mass,damping ratio,and stiffness are identified with the help of experimental modal tests and the recursive least square method(RLS).It is shown that using PID controller leads to reducing the vibration transmissibility in the resonance frequency(=93.45 Hz)with respect to the typical passive engine mount by a factor of 58%.The average of the vibration transmissibility decreasing is also 43%within frequency bandwidth(50~170 Hz).展开更多
文摘In recent years,China’s landscaping projects have developed vigorously,and the growth rate of urban garden green space areas has been maintained at about 5%.Overall,with the development of the national economy and the support of macro policies,people’s demand for close to nature and beautify the environment is gradually increasing,which has brought new growth momentum for the development of the landscaping industry.Simultaneously,from the perspective of future economic development and urban development,the landscaping industry still has a lot of room for development.However,with the rapid development of landscape engineering,the problem of cost control of landscape engineering is becoming more prominent,the phenomenon of budget overestimation is common,and there are many factors affecting the cost of landscape engineering,which brings difficulties and challenges to the analysis of its influencing factors and cost management.How to scientifically analyze the influencing factors and control the cost has become an important link in the landscaping project.To solve the above problems,this paper takes the design stage of landscaping engineering as the background,takes the design estimate of landscaping engineering as the research object,through literature research and data collection,fully excavates the main influencing factors of the design estimate stage of landscaping engineering,analyzes the key points of cost control,and provides reference ideas and directions for the later cost management and control.
文摘The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compensator based on functional link neural network is used to deal with the engine nonlinearity and the hardware-in-loop simulation is also developed. The results show that the nonlinear MRAC controller has the adequate performance of compensating and adapting nonlinearity arising from the change of engine state or working environment. Such feature demonstrates potential practical applications of MRAC for aeroengine control system.
文摘Aim To control the noise of two stroke engine Methods On the basis of noise identification,a new muffler and acoustic shield were designed,Results the car's pass-by noise below the national limit Conclusion through proper noise controlling measures,the pass-by noise of two stroke engines could be reduced under national permitting limit.
文摘In order to sample the speed signal of electronic diesel engine in real time and make the engine work reliable, the diesel engine control system's speed acquisition was studied and the problem of speed disturbance was solved. The control system was based on the 8?bit electronic control unit(ECU) system and the assembly language was used to design the software for controlling the engine fuel quantity and the turbocharger of the variable geometry turbine for the heavy duty diesel engine. By changing the timing method for speed acquisition, the problem of speed disturbance was solved and the reliability of the ECU was improved.
文摘According to advantages of neural network and characteristics of operatingprocedures of engine, a new strategy is represented on the control of fuel injection and ignitiontiming of gasoline engine based on improved BP network algorithm. The optimum ignition advance angleand fuel injection pulse band of engine under different speed and load are tested for the samplestraining network, focusing on the study of the design method and procedure of BP neural network inengine injection and ignition control. The results show that artificial neural network technique canmeet the requirement of engine injection and ignition control. The method is feasible for improvingpower performance, economy and emission performances of gasoline engine.
文摘This paper proposes a new loop recovery method to solve the reduced order problem of H∞/ LTR method. The resulted lower order controller shares almost the same performance and robustness as the original H ∞/LTR controller. Further more, this paper develops a new order reduction method: slow-fast mode order reduction (SFMOR) method. This order reduction method is particularly effective for those controllers whose modes can be divided into a slow part and a fast part according to their velocities. Application of these methods to a benchmark example and a certain turbofan engine is described.
文摘A decentralized model reference adaptive control (MRAC) scheme is proposed and applied to design a multivariable control system of a dual-spool turbofan engine.Simulation studies show good static and dynamic performance of the system over the fullflight envelope. Simulation results also show the good effectiveness of reducing interactionin the multivariable system with significant coupling. The control system developed has awide frequency band to satisfy the strict engineering requirement and is practical for engineering applications.
基金supported by the National Natural Science Foundation of China(6140321061601228+3 种基金61603191)the Natural Science Foundation of Jiangsu(BK20161021)the Nanjing University of Posts and Telecommunications Science Foundation(NY214173)the Open Program of Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing(3DL201607)
文摘A fault tolerant control methodology based adaptive sliding mode(ASM) backstepping is proposed for near space vehicle(NSV) attitude control system under engine faults. The proposed scheme combined adaptive backstepping with the sliding mode control strategy could guarantee the system’s stability and track desired signals under external disturbances and engine faults. Firstly, attitude mode description and the engine faulty model are given. Secondly, a nominal control law is designed.Thirdly, a sliding mode observer is given later in order to estimate both the information of engine faults and external disturbances. An adaptive sliding mode technology based on the previous nominal control law is developed via updating faulty parameters. Finally,analyze the system’s fault-tolerant performance and reliability through experiment simulation, which verifies the proposed design of fault-tolerant control can tolerate engine faults, as well as the strong robustness for external disturbance.
文摘In this paper, the control problem of auxiliary power unit (APU) for hybrid electric vehicles is investigated. An adaptive controller is provided to achieve the coordinated control between the engine speed and the battery charging voltage. The proposed adaptive coordinated control laws for the throttle angle of the engine and the voltage of the power-converter can guarantee not only the asymptotic tracking performance of the engine speed and the regulation of the battery charging voltage, but also the robust stability of the closed loop system under external load changes. Simulation results are given to verify the performance of the proposed adaptive controller.
文摘The continuous cooling transformation of hot deformation austenite austenite of test steel and the effect of different processing schedules of controlled rolling and controlled cooling on the strength and ductility have been studied. The theory and the experiment base are presented for controlled rolling and controlled cooling of the SBL micro alloyed engineering steel.
文摘In order to improve the cold start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about the partial working processes of the diesel engine, the amount of heat energy, enough to make the fuel self ignite at the end of compression process at different temperatures of coolant and intake air, was calculated. Several HY20 preheating plugs were used to heat up the intake air. Meanwhile, an electronic control system based on 8 bit micro controller unit (MCS 8031) was designed to automatically control the process of heating intake air. According to the various temperatures of coolant and ambient air, one plug or two plugs can automatically be selected to heat intake air. The demo experiment validated that the total system could operate successfully and achieve the scheduled function.
基金Sponsored by the Ministerial Advanced Research Foundation (C2002AA002)
文摘A variable nozzle turbocharger (VNT) was applied to a 2.2-liter L4 natural gas engine,and a VNT control system was designed to operate it.Based on VNT matching test results,a VNT control strategy was studied,in which VNT adjustment is carried out through pre-calibrated VNT handling rod position,combined with a closed-loop target boost pressure feedback using proportional-integral-derivative(PID) algorithm.Experimental results showed that the VNT control system presented in this thesis can lead to optimized performance of VNT,increase engine volumetric efficiency over a wide speed range,improve engine dynamic characteristics and upgrade economic performance.
基金Supported by the Program for New Century Excellent Talents in University(NECT-11-0826) the National Natural Science Foundation of China(NSFC 51279037)+1 种基金 the Fundamental Research Funds for the Central Universities(HEUCFZ13) the Postdoctoral Science-research Developmental Foundation of Heilongjiang Province(LBH-Q12126)Acknowledgement The authors gratefully acknowledge vice Professor Yong Shi and Jun Sun's help in fuel injection experiment.
文摘A simulation model of an electronically controlled two solenoid valve fuel injection system for a diesel engine is established in the AMESim environment.The accuracy of the model is validated through comparison with experimental data.The influence of pre-injection control parameters on main-injection quantity under different control modes is analyzed.In the spill control valve mode,main-injection fuel quantity decreases gradually and then reaches a stable level because of the increase in multi-injection dwell time.In the needle control valve mode,main-injection fuel quantity increases with rising multi-injection dwell time;this effect becomes more obvious at high-speed revolutions and large main-injection pulse widths.Pre-injection pulse width has no obvious influence on main-injection quantity under the two control modes;the variation in main-injection quantity is in the range of 1 mm3.
基金Sponsored by the Ministerial Level Advanced Research(10660060220)
文摘A hardware-in-the-loop simulating platform is developed to avoid designing defects caused by the complicated logical structure and multiple-functional buildup of the dectronic control unit(ECU)in modem diesel engines, and to diminish potential damages on components or human exposure to dangers in R&D en- deavor. This plat-form consists of a computer installed with software Matlab/Simulink/RTW and dSPACE/ ControlDesk; a diesel engine ECU, and a dSPACE autobox which runs a real-time diesel engine model. A typical model of diesel engine with turbocharger and intercooler is presented. Based on this model our research is carried out with a real ECU to test its software control strategies. Results show that by using the diesel engine model downloaded inside, the hardware-in-the-loop platform can simulate diesel engine's working conditions and generate all kinds of sensor signals which ECU needs on a real-time basis. So the ECU control strategies can be validated and relevant parameters roughly calibrated.
文摘For homogeneous charge compression ignition (HCCI) combustion, the auto-ignition process is very sensitive to in-cylinder conditions, including in-cylinder temperature, in-cylinder components and concentrations. Therefore, accurate control is required for reliable and efficient HCCI combustion. This paper outlines a simplified gasoline-fueled HCCI engine model implemented in Simulink environment. The model is able to run in real-time and with fixed simulation steps with the aim of cycle-to-cycle control and hardware- in-the-loop simulation. With the aim of controlling the desired amount of the trapped exhaust gas recirculation (EGR) from the previous cycle, the phase of the intake and exhaust valves and the respective profiles are designed to vary in this model. The model is able to anticipate the auto-ignition timing and the in-cylinder pressure and temperature. The validation has been conducted using a comparison of the experimental results on Ricardo Hydro engine published in a research by Tianjin University and a JAGUAR V6 HCCI test engine at the University of Birmingham. The comparison shows the typical HCCI combustion and a fair agreement between the simulation and experimental results.
基金the National Natural Science Foundation of China(No:20273043)the Ministry of Education of China for providing financial support for this project
文摘A three-way catalyst comprised novel oxygen storage components for emission control in natural gas powered engines was prepared. The addition of novel oxygen storage components to the Pd/γ-Al2O3 catalysts resulted in improved activities of the fresh and aged catalyst by lowering the light-off temperature for methane in natural gas engines exhaust.
基金Supported by National Natural Science Foundation of China (No. 70931004)
文摘Traditional studies on integrated statistical process control and engineering process control (SPC-EPC) are based on linear autoregressive integrated moving average (ARIMA) time series models to describe the dynamic noise of the system.However,linear models sometimes are unable to model complex nonlinear autocorrelation.To solve this problem,this paper presents an integrated SPC-EPC method based on smooth transition autoregressive (STAR) time series model,and builds a minimum mean squared error (MMSE) controller as well as an integrated SPC-EPC control system.The performance of this method for checking the trend and sustained shift is analyzed.The simulation results indicate that this integrated SPC-EPC control method based on STAR model is effective in controlling complex nonlinear systems.
文摘In a hybrid system, the subsystems with discrete dynamics play a central role in a hybrid system. In the course of engineering machinery of cluster construction, the discrete control law is hard to obtain because the construction environment is complex and there exist many affecting factors. In this paper, hierarchically intelligent control, expert control and fuzzy control are introduced into the discrete subsystems of engineering machinery of cluster hybrid system, so as to rebuild the hybrid system and make the discrete control law easily and effectively obtained. The structures, reasoning mechanism and arithmetic of intelligent control are replanted to discrete dynamic, conti- nuous process and the interface of the hybrid system. The structures of three types of intelligent hybrid system are presented and the human experiences summarized from engineering machinery of cluster are taken into account.
文摘In this paper;the dynamic characteristics of a semi-active magnetorheological fluid(MRF)engine mount are studied.To do so,the performance of the MRF engine mount is experimentally examined in higher frequencies(50~170 Hz)and the various amplitudes(0.01~0.2 mm).In such an examination,an MRF engine mount along with its magnetically biased is fabricated and successfully measured.In addition,the natural frequencies of the system are obtained by standard hammer modal test.For modelling the behavior of the system,a mass-spring-damper model with tuned PID coefficients based on Pessen integral of absolute error method is used.The parameters of such a model including mass,damping ratio,and stiffness are identified with the help of experimental modal tests and the recursive least square method(RLS).It is shown that using PID controller leads to reducing the vibration transmissibility in the resonance frequency(=93.45 Hz)with respect to the typical passive engine mount by a factor of 58%.The average of the vibration transmissibility decreasing is also 43%within frequency bandwidth(50~170 Hz).