The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attr...The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.展开更多
Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself disc...Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself discrimination paradigmin the biological immune system,the negative representation of information indicates features such as simplicity and efficiency,which is very suitable for preserving social network privacy.Therefore,we suggest a method to preserve the topology privacy and node attribute privacy of attribute social networks,called AttNetNRI.Specifically,a negative survey-based method is developed to disturb the relationship between nodes in the social network so that the topology structure can be kept private.Moreover,a negative database-based method is proposed to hide node attributes,so that the privacy of node attributes can be preserved while supporting the similarity estimation between different node attributes,which is crucial to the analysis of social networks.To evaluate the performance of the AttNetNRI,empirical studies have been conducted on various attribute social networks and compared with several state-of-the-art methods tailored to preserve the privacy of social networks.The experimental results show the superiority of the developed method in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topology disturbing and attribute hiding parts.The experimental results show the superiority of the developed methods in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topological interference and attribute-hiding components.展开更多
For the issue of evaluation of capability of enterprise agent coalition,an evaluation model based on information fusion and entropy weighting method is presented. The attribute reduction method is utilized to reduce i...For the issue of evaluation of capability of enterprise agent coalition,an evaluation model based on information fusion and entropy weighting method is presented. The attribute reduction method is utilized to reduce indicators of the capability according to the theory of rough set. The new indicator system can be determined. Attribute reduction can also reduce the workload and remove the redundant information,when there are too many indicators or the indicators have strong correlation. The research complexity can be reduced and the efficiency can be improved. Entropy weighting method is used to determine the weights of the remaining indicators,and the importance of indicators is analyzed. The information fusion model based on nearest neighbor method is developed and utilized to evaluate the capability of multiple agent coalitions,compared to cloud evaluation model and D-S evidence method. Simulation results are reasonable and with obvious distinction. Thus they verify the effectiveness and feasibility of the model. The information fusion model can provide more scientific,rational decision support for choosing the best agent coalition,and provide innovative steps for the evaluation process of capability of agent coalitions.展开更多
A new approach to knowledge acquisition in incomplete information system with fuzzy decisions is proposed. In such incomplete information system, the universe of discourse is classified by the maximal tolerance classe...A new approach to knowledge acquisition in incomplete information system with fuzzy decisions is proposed. In such incomplete information system, the universe of discourse is classified by the maximal tolerance classes, and fuzzy approximations are defined based on them. Three types of relative reducts of maximal tolerance classes are then proposed, and three types of fuzzy decision rules based on the proposed attribute description are defined. The judgment theorems and approximation discernibility functions with respect to them are presented to compute the relative reduct by using Boolean reasoning techniques, from which we can derive optimal fuzzy decision rules from the systems. At last, three types of relative reducts of the system and their computing methods are given.展开更多
For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for...For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for the ensemble-based data assimilation methods.In this paper,we propose a multi-source information fused generative adversarial network(MSIGAN)model,which is used for parameterization of the complex geologies.In MSIGAN,various information such as facies distribution,microseismic,and inter-well connectivity,can be integrated to learn the geological features.And two major generative models in deep learning,variational autoencoder(VAE)and generative adversarial network(GAN)are combined in our model.Then the proposed MSIGAN model is integrated into the ensemble smoother with multiple data assimilation(ESMDA)method to conduct history matching.We tested the proposed method on two reservoir models with fluvial facies.The experimental results show that the proposed MSIGAN model can effectively learn the complex geological features,which can promote the accuracy of history matching.展开更多
Configuration information acquisition and matching are two important steps in the self-reconfiguring process of self-reconfigurable robots. The process of configuration information acquisition was introduced, and a se...Configuration information acquisition and matching are two important steps in the self-reconfiguring process of self-reconfigurable robots. The process of configuration information acquisition was introduced, and a self-reconfiguring configuration matching strategy based on graded optimization mechanism was proposed. The first-grade optimization was to search common connection between matching scheme and goal configuration. The second-grade optimization, whose object function was constructed in terms of configuration connectivity, was to search connnon topology according to the results of the first-grade optimization. The entire process of configuration information acquisition and matching was verified by an experiment and genetic algorithm (GA). The result shows the accuracy of the configuration information acquisition and the effectiveness of the configuration matching method.展开更多
Dense matching of remote sensing images is a key step in the generation of accurate digital surface models.The semi-global matching algorithm comprehensively considers the advantages and disadvantages of local matchin...Dense matching of remote sensing images is a key step in the generation of accurate digital surface models.The semi-global matching algorithm comprehensively considers the advantages and disadvantages of local matching and global matching in terms of matching effect and computational efficiency,so it is widely used in close-range,aerial and satellite image matching.Based on the analysis of the original semi-global matching algorithm,this paper proposes a semi-global high-resolution remote sensing image that takes into account the geometric constraints of the connection points and the image texture information based on a large amount of high-resolution remote sensing image data and the characteristics of clear image texture.123123The method includes 4 parts:①Precise orientation.Aiming at the system error in the image orientation model,the system error of the rational function model is compensated by the geometric constraint relationship of the connecting points between the images,and the sub-pixel positioning accuracy is obtained;②Epipolar image generation.After the original image is divided into blocks,the epipolar image is generated based on the projection trajectory method;③Image dense matching.In order to reduce the size of the cost space and calculation time,the image is pyramided and then semi-globally matched layer by layer.In the matching process,the disparity map expansion and erosion algorithm that takes into account the image texture information is introduced to restrict the disparity search range and better retain the edge characteristics of the ground objects;④Generate DSM.In order to test the matching effect,the weighted median filter algorithm is used to filter the disparity map,and the DSM is obtained based on the principle of forward intersection.Finally,the paper uses the matching results of WordView3 and Ziyuan No.3 stereo image to verify the effectiveness of this method.展开更多
Information Systems (IS) agility is a current topic of interest in the IS industry. The study follows up on the work on the definition of the construct of IS agility which is defined as the ability of IS to sense a ch...Information Systems (IS) agility is a current topic of interest in the IS industry. The study follows up on the work on the definition of the construct of IS agility which is defined as the ability of IS to sense a change in real time;diagnose it in real time;and select and execute an action in real time. It explores the attributes for sensing in an Agile Information System. A set of attributes was initially derived using the practitioner literature and then refined using interviews with practitioners. Their importance and validity were established using a survey of the industry. All attributes derived from this study were deemed pertinent for sensing in an agile information system. Dimensions underlying these attributes were identified using Exploratory Factor Analysis. This list of attributes can form the basis for assessing and establishing sensing mechanisms to increase IS agility.展开更多
In conventional image matching methods, the image matching process is mostly based on image statistic information. One aspect neglected by all these methods is that there is much fuzzy information contained in these i...In conventional image matching methods, the image matching process is mostly based on image statistic information. One aspect neglected by all these methods is that there is much fuzzy information contained in these images. A new fuzzy matching algorithm based on fuzzy similarity for navigation is presented in this paper. Because the fuzzy theory is of the ability of making good description of the fuzzy information contained in images, the image matching method based on fuzzy similarity would look forward to producing good performance results. Experimental results using matching algorithm based on fuzzy information also demonstrate its reliability and practicability.展开更多
Operation control of power systems has become challenging with an increase in the scale and complexity of power distribution systems and extensive access to renewable energy.Therefore,improvement of the ability of dat...Operation control of power systems has become challenging with an increase in the scale and complexity of power distribution systems and extensive access to renewable energy.Therefore,improvement of the ability of data-driven operation management,intelligent analysis,and mining is urgently required.To investigate and explore similar regularities of the historical operating section of the power distribution system and assist the power grid in obtaining high-value historical operation,maintenance experience,and knowledge by rule and line,a neural information retrieval model with an attention mechanism is proposed based on graph data computing technology.Based on the processing flow of the operating data of the power distribution system,a technical framework of neural information retrieval is established.Combined with the natural graph characteristics of the power distribution system,a unified graph data structure and a data fusion method of data access,data complement,and multi-source data are constructed.Further,a graph node feature-embedding representation learning algorithm and a neural information retrieval algorithm model are constructed.The neural information retrieval algorithm model is trained and tested using the generated graph node feature representation vector set.The model is verified on the operating section of the power distribution system of a provincial grid area.The results show that the proposed method demonstrates high accuracy in the similarity matching of historical operation characteristics and effectively supports intelligent fault diagnosis and elimination in power distribution systems.展开更多
Attribute reduction,as one of the essential applications of the rough set,has attracted extensive attention from scholars.Information granulation is a key step of attribute reduction,and its efficiency has a significa...Attribute reduction,as one of the essential applications of the rough set,has attracted extensive attention from scholars.Information granulation is a key step of attribute reduction,and its efficiency has a significant impact on the overall efficiency of attribute reduction.The information granulation of the existing neighborhood rough set models is usually a single layer,and the construction of each information granule needs to search all the samples in the universe,which is inefficient.To fill such gap,a new neighborhood rough set model is proposed,which aims to improve the efficiency of attribute reduction by means of two-layer information granulation.The first layer of information granulation constructs a mapping-equivalence relation that divides the universe into multiple mutually independent mapping-equivalence classes.The second layer of information granulation views each mapping-equivalence class as a sub-universe and then performs neighborhood informa-tion granulation.A model named mapping-equivalence neighborhood rough set model is derived from the strategy of two-layer information granulation.Experimental results show that compared with other neighborhood rough set models,this model can effectively improve the efficiency of attribute reduction and reduce the uncertainty of the system.The strategy provides a new thinking for the exploration of neighborhood rough set models and the study of attribute reduction acceleration problems.展开更多
Contrastive self‐supervised representation learning on attributed graph networks with Graph Neural Networks has attracted considerable research interest recently.However,there are still two challenges.First,most of t...Contrastive self‐supervised representation learning on attributed graph networks with Graph Neural Networks has attracted considerable research interest recently.However,there are still two challenges.First,most of the real‐word system are multiple relations,where entities are linked by different types of relations,and each relation is a view of the graph network.Second,the rich multi‐scale information(structure‐level and feature‐level)of the graph network can be seen as self‐supervised signals,which are not fully exploited.A novel contrastive self‐supervised representation learning framework on attributed multiplex graph networks with multi‐scale(named CoLM^(2)S)information is presented in this study.It mainly contains two components:intra‐relation contrast learning and interrelation contrastive learning.Specifically,the contrastive self‐supervised representation learning framework on attributed single‐layer graph networks with multi‐scale information(CoLMS)framework with the graph convolutional network as encoder to capture the intra‐relation information with multi‐scale structure‐level and feature‐level selfsupervised signals is introduced first.The structure‐level information includes the edge structure and sub‐graph structure,and the feature‐level information represents the output of different graph convolutional layer.Second,according to the consensus assumption among inter‐relations,the CoLM^(2)S framework is proposed to jointly learn various graph relations in attributed multiplex graph network to achieve global consensus node embedding.The proposed method can fully distil the graph information.Extensive experiments on unsupervised node clustering and graph visualisation tasks demonstrate the effectiveness of our methods,and it outperforms existing competitive baselines.展开更多
Dense matching of remote sensing images is a key step in the generation of accurate digital surface models.The semi-global matching algorithm comprehensively considers the advantages and disadvantages of local matchin...Dense matching of remote sensing images is a key step in the generation of accurate digital surface models.The semi-global matching algorithm comprehensively considers the advantages and disadvantages of local matching and global matching in terms of matching effect and computational efficiency,so it is widely used in close-range,aerial and satellite image matching.Based on the analysis of the original semi-global matching algorithm,this paper proposes a semi-global high-resolution remote sensing image that takes into account the geometric constraints of the connection points and the image texture information based on the large amount of high-resolution remote sensing image data and the characteristics of clear image texture.The method includes 4 parts:(1)Precise orientation.Aiming at the system error in the image orientation model,the system error of the rational function model is compensated by the geometric constraint relationship of the connecting points between the images,and the sub-pixel positioning accuracy is obtained;(2)Epipolar image generation.After the original image is divided into blocks,the epipolar image is generated based on the projection trajectory method;(3)Image dense matching.In order to reduce the size of the cost space and calculation time,the image is pyramided and then semi-globally matched layer by layer.In the matching process,the disparity map expansion and erosion algorithm that takes into account the image texture information is introduced to restrict the disparity search range and better retain the edge characteristics of the ground objects;(4)Generate DSM.In order to test the matching effect,the weighted median filter algorithm is used to filter the disparity map,and the DSM is obtained based on the principle of forward intersection.Finally,the paper uses the matching results of WordView3 and Ziyuan No.3 stereo image to verify the effectiveness of this method.展开更多
Clothing attribute recognition has become an essential technology,which enables users to automatically identify the characteristics of clothes and search for clothing images with similar attributes.However,existing me...Clothing attribute recognition has become an essential technology,which enables users to automatically identify the characteristics of clothes and search for clothing images with similar attributes.However,existing methods cannot recognize newly added attributes and may fail to capture region-level visual features.To address the aforementioned issues,a region-aware fashion contrastive language-image pre-training(RaF-CLIP)model was proposed.This model aligned cropped and segmented images with category and multiple fine-grained attribute texts,achieving the matching of fashion region and corresponding texts through contrastive learning.Clothing retrieval found suitable clothing based on the user-specified clothing categories and attributes,and to further improve the accuracy of retrieval,an attribute-guided composed network(AGCN)as an additional component on RaF-CLIP was introduced,specifically designed for composed image retrieval.This task aimed to modify the reference image based on textual expressions to retrieve the expected target.By adopting a transformer-based bidirectional attention and gating mechanism,it realized the fusion and selection of image features and attribute text features.Experimental results show that the proposed model achieves a mean precision of 0.6633 for attribute recognition tasks and a recall@10(recall@k is defined as the percentage of correct samples appearing in the top k retrieval results)of 39.18 for composed image retrieval task,satisfying user needs for freely searching for clothing through images and texts.展开更多
Similarity matching and this paper, a saliency-based information presentation are two matching algorithm is proposed key factors in information retrieval. In for user-oriented search based on the psychological studies...Similarity matching and this paper, a saliency-based information presentation are two matching algorithm is proposed key factors in information retrieval. In for user-oriented search based on the psychological studies on human perception, and major emphasis on the saliently similar aspect of objects to be compared is placed and thus the search result is more agreeable for users. After relevant results are obtained, the cluster-based browsing algorithm is adopted for search result presentation based on social network analysis. By organizing the results in clustered lists, the user can have a general understanding of the whole collection by viewing only a small part of results and locate those of major interest rapidly. Experimental results demonstrate the advantages of the proposed algorithm over the traditional work.展开更多
The naïve Bayes classifier is one of the commonly used data mining methods for classification.Despite its simplicity,naïve Bayes is effective and computationally efficient.Although the strong attribute indep...The naïve Bayes classifier is one of the commonly used data mining methods for classification.Despite its simplicity,naïve Bayes is effective and computationally efficient.Although the strong attribute independence assumption in the naïve Bayes classifier makes it a tractable method for learning,this assumption may not hold in real-world applications.Many enhancements to the basic algorithm have been proposed in order to alleviate the violation of attribute independence assumption.While these methods improve the classification performance,they do not necessarily retain the mathematical structure of the naïve Bayes model and some at the expense of computational time.One approach to reduce the naïvetéof the classifier is to incorporate attribute weights in the conditional probability.In this paper,we proposed a method to incorporate attribute weights to naïve Bayes.To evaluate the performance of our method,we used the public benchmark datasets.We compared our method with the standard naïve Bayes and baseline attribute weighting methods.Experimental results show that our method to incorporate attribute weights improves the classification performance compared to both standard naïve Bayes and baseline attribute weighting methods in terms of classification accuracy and F1,especially when the independence assumption is strongly violated,which was validated using the Chi-square test of independence.展开更多
The dynamic parameters of multiple projectiles that are fired using multi-barrel weapons in highfrequency continuous firing modes are important indicators to measure the performance of these weapons.The characteristic...The dynamic parameters of multiple projectiles that are fired using multi-barrel weapons in highfrequency continuous firing modes are important indicators to measure the performance of these weapons.The characteristics of multiple projectiles are high randomness and large numbers launched in a short period of time,making it very difficult to obtain the real dispersion parameters of the projectiles due to the occlusion or coincidence of multiple projectiles.Using six intersecting-screen testing system,in this paper,we propose an association recognition and matching algorithm of multiple projectiles using a temporal and spatial information constraint mechanism.We extract the output signal from each detection screen and then use the wavelet transform to process the output signal.We present a method to identify and extract the time values on which the projectiles pass through the detection screens using the wavelet transform modulus maximum theory.We then use the correlation of the output signals of three parallel detection screens to establish a correlation coefficient recognition constraint function for the multiple projectiles.Based on the premise of linear projectile motion,we establish a temporal and spatial constraint matching model using the projectile’s position coordinates in each detection screen and the projectile’s time constraints within the multiple intersecting-screen geometry.We then determine the time values of the multiple projectiles in each detection screen using an iterative search cycle registration,and finally obtain the flight parameters for the multiple projectiles in the presence of uncertainty.The proposed method and algorithm were verified experimentally and can solve the problem of uncertainty in projectiles flight parameter under different multiple projectile firing states.展开更多
For the past three decades, interoperability among heterogeneous systems had been a hard nut to crack due to the schematic and semantic perspectives that exist between objects. These systems were built under different...For the past three decades, interoperability among heterogeneous systems had been a hard nut to crack due to the schematic and semantic perspectives that exist between objects. These systems were built under different data models. As such, levels of the local schemas are semantically very poor due to the limited expressiveness of traditional data models in which they were designed. Further more, most of the existing schema integration architectural components are inadequately equipped to handle the mapping schemas, especially when the semantics and structural conflicts are involved. This paper introduces an Intelligent Binary Schema Matching system (IBSMS), which exploits the phenomenon of making its components intelligent. That’s equipping its components such as translators and integrators with adequate knowledge about various data models. This allows the components acquire enough intelligence to maneuver or manipulate the correspondence between constructs from different models. In addition, the system has a Binary Matcher, which compares the attribute correspondences of various databases in a pairwise form, in order to establish the equivalences. With the establishment of the mappings, the users shall be able to access them (mappings) for their desired usage.展开更多
Identifying speed,tag average response times and reliability are the most important capabilities in passive RFID(radio frequency identification) system.QT(query tree) is a famous algorithm for lowest-cost RFID tags,bu...Identifying speed,tag average response times and reliability are the most important capabilities in passive RFID(radio frequency identification) system.QT(query tree) is a famous algorithm for lowest-cost RFID tags,but its shortcoming is high searching delay and high tag average response times.A prefix subsection matching binary(PSMB) algorithm based on QTalgorithm is proposed.The key idea of PSMB anti-collision algorithm is that,during searching phase,a given reader uses the particular tags ID,which has been searched out formerly,to shorten searching delay and depress tag average response times.The idea of PSMB algorithm can be described as follows.Usually,tag ID is composed of several subsections which have different meanings.Based on the tags ID searched out formerly,a given reader builds a prefix database.In subsequent searching phase,the reader uses its prefix database to deduce searching space of tag ID.Simulation results show that identification delay of PSMB algorithm is about 1/3 of QTalgorithm,tag average response times is about 1/4 of QTalgorithm,and system throughput rate is treble QTalgorithm.展开更多
基金Anhui Province Natural Science Research Project of Colleges and Universities(2023AH040321)Excellent Scientific Research and Innovation Team of Anhui Colleges(2022AH010098).
文摘The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.
基金supported by the National Natural Science Foundation of China(Nos.62006001,62372001)the Natural Science Foundation of Chongqing City(Grant No.CSTC2021JCYJ-MSXMX0002).
文摘Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself discrimination paradigmin the biological immune system,the negative representation of information indicates features such as simplicity and efficiency,which is very suitable for preserving social network privacy.Therefore,we suggest a method to preserve the topology privacy and node attribute privacy of attribute social networks,called AttNetNRI.Specifically,a negative survey-based method is developed to disturb the relationship between nodes in the social network so that the topology structure can be kept private.Moreover,a negative database-based method is proposed to hide node attributes,so that the privacy of node attributes can be preserved while supporting the similarity estimation between different node attributes,which is crucial to the analysis of social networks.To evaluate the performance of the AttNetNRI,empirical studies have been conducted on various attribute social networks and compared with several state-of-the-art methods tailored to preserve the privacy of social networks.The experimental results show the superiority of the developed method in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topology disturbing and attribute hiding parts.The experimental results show the superiority of the developed methods in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topological interference and attribute-hiding components.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61173052)the China Postdoctoral Scinece Foundation(Grant No.2014M561363)
文摘For the issue of evaluation of capability of enterprise agent coalition,an evaluation model based on information fusion and entropy weighting method is presented. The attribute reduction method is utilized to reduce indicators of the capability according to the theory of rough set. The new indicator system can be determined. Attribute reduction can also reduce the workload and remove the redundant information,when there are too many indicators or the indicators have strong correlation. The research complexity can be reduced and the efficiency can be improved. Entropy weighting method is used to determine the weights of the remaining indicators,and the importance of indicators is analyzed. The information fusion model based on nearest neighbor method is developed and utilized to evaluate the capability of multiple agent coalitions,compared to cloud evaluation model and D-S evidence method. Simulation results are reasonable and with obvious distinction. Thus they verify the effectiveness and feasibility of the model. The information fusion model can provide more scientific,rational decision support for choosing the best agent coalition,and provide innovative steps for the evaluation process of capability of agent coalitions.
基金supported by the National Natural Science Foundation of China (61070241)the Natural Science Foundation of Shandong Province (ZR2010FM035)Science Research Foundation of University of Jinan (XKY0808)
文摘A new approach to knowledge acquisition in incomplete information system with fuzzy decisions is proposed. In such incomplete information system, the universe of discourse is classified by the maximal tolerance classes, and fuzzy approximations are defined based on them. Three types of relative reducts of maximal tolerance classes are then proposed, and three types of fuzzy decision rules based on the proposed attribute description are defined. The judgment theorems and approximation discernibility functions with respect to them are presented to compute the relative reduct by using Boolean reasoning techniques, from which we can derive optimal fuzzy decision rules from the systems. At last, three types of relative reducts of the system and their computing methods are given.
基金supported by the National Natural Science Foundation of China under Grant 51722406,52074340,and 51874335the Shandong Provincial Natural Science Foundation under Grant JQ201808+5 种基金The Fundamental Research Funds for the Central Universities under Grant 18CX02097Athe Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-008the Science and Technology Support Plan for Youth Innovation of University in Shandong Province under Grant 2019KJH002the National Research Council of Science and Technology Major Project of China under Grant 2016ZX05025001-006111 Project under Grant B08028Sinopec Science and Technology Project under Grant P20050-1
文摘For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for the ensemble-based data assimilation methods.In this paper,we propose a multi-source information fused generative adversarial network(MSIGAN)model,which is used for parameterization of the complex geologies.In MSIGAN,various information such as facies distribution,microseismic,and inter-well connectivity,can be integrated to learn the geological features.And two major generative models in deep learning,variational autoencoder(VAE)and generative adversarial network(GAN)are combined in our model.Then the proposed MSIGAN model is integrated into the ensemble smoother with multiple data assimilation(ESMDA)method to conduct history matching.We tested the proposed method on two reservoir models with fluvial facies.The experimental results show that the proposed MSIGAN model can effectively learn the complex geological features,which can promote the accuracy of history matching.
基金the National High Technology Research and Development Programme of China(No.2006AA04Z220)National Natural Science Foundation of China(No.60705027)Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)(No.IRT0423)
文摘Configuration information acquisition and matching are two important steps in the self-reconfiguring process of self-reconfigurable robots. The process of configuration information acquisition was introduced, and a self-reconfiguring configuration matching strategy based on graded optimization mechanism was proposed. The first-grade optimization was to search common connection between matching scheme and goal configuration. The second-grade optimization, whose object function was constructed in terms of configuration connectivity, was to search connnon topology according to the results of the first-grade optimization. The entire process of configuration information acquisition and matching was verified by an experiment and genetic algorithm (GA). The result shows the accuracy of the configuration information acquisition and the effectiveness of the configuration matching method.
基金National Natural Science Foundation of China(41871367)Ministry of Science and Technology of the People’s Republic of China(2018YFE0206100)。
文摘Dense matching of remote sensing images is a key step in the generation of accurate digital surface models.The semi-global matching algorithm comprehensively considers the advantages and disadvantages of local matching and global matching in terms of matching effect and computational efficiency,so it is widely used in close-range,aerial and satellite image matching.Based on the analysis of the original semi-global matching algorithm,this paper proposes a semi-global high-resolution remote sensing image that takes into account the geometric constraints of the connection points and the image texture information based on a large amount of high-resolution remote sensing image data and the characteristics of clear image texture.123123The method includes 4 parts:①Precise orientation.Aiming at the system error in the image orientation model,the system error of the rational function model is compensated by the geometric constraint relationship of the connecting points between the images,and the sub-pixel positioning accuracy is obtained;②Epipolar image generation.After the original image is divided into blocks,the epipolar image is generated based on the projection trajectory method;③Image dense matching.In order to reduce the size of the cost space and calculation time,the image is pyramided and then semi-globally matched layer by layer.In the matching process,the disparity map expansion and erosion algorithm that takes into account the image texture information is introduced to restrict the disparity search range and better retain the edge characteristics of the ground objects;④Generate DSM.In order to test the matching effect,the weighted median filter algorithm is used to filter the disparity map,and the DSM is obtained based on the principle of forward intersection.Finally,the paper uses the matching results of WordView3 and Ziyuan No.3 stereo image to verify the effectiveness of this method.
文摘Information Systems (IS) agility is a current topic of interest in the IS industry. The study follows up on the work on the definition of the construct of IS agility which is defined as the ability of IS to sense a change in real time;diagnose it in real time;and select and execute an action in real time. It explores the attributes for sensing in an Agile Information System. A set of attributes was initially derived using the practitioner literature and then refined using interviews with practitioners. Their importance and validity were established using a survey of the industry. All attributes derived from this study were deemed pertinent for sensing in an agile information system. Dimensions underlying these attributes were identified using Exploratory Factor Analysis. This list of attributes can form the basis for assessing and establishing sensing mechanisms to increase IS agility.
文摘In conventional image matching methods, the image matching process is mostly based on image statistic information. One aspect neglected by all these methods is that there is much fuzzy information contained in these images. A new fuzzy matching algorithm based on fuzzy similarity for navigation is presented in this paper. Because the fuzzy theory is of the ability of making good description of the fuzzy information contained in images, the image matching method based on fuzzy similarity would look forward to producing good performance results. Experimental results using matching algorithm based on fuzzy information also demonstrate its reliability and practicability.
基金supported by the National Key R&D Program of China(2020YFB0905900).
文摘Operation control of power systems has become challenging with an increase in the scale and complexity of power distribution systems and extensive access to renewable energy.Therefore,improvement of the ability of data-driven operation management,intelligent analysis,and mining is urgently required.To investigate and explore similar regularities of the historical operating section of the power distribution system and assist the power grid in obtaining high-value historical operation,maintenance experience,and knowledge by rule and line,a neural information retrieval model with an attention mechanism is proposed based on graph data computing technology.Based on the processing flow of the operating data of the power distribution system,a technical framework of neural information retrieval is established.Combined with the natural graph characteristics of the power distribution system,a unified graph data structure and a data fusion method of data access,data complement,and multi-source data are constructed.Further,a graph node feature-embedding representation learning algorithm and a neural information retrieval algorithm model are constructed.The neural information retrieval algorithm model is trained and tested using the generated graph node feature representation vector set.The model is verified on the operating section of the power distribution system of a provincial grid area.The results show that the proposed method demonstrates high accuracy in the similarity matching of historical operation characteristics and effectively supports intelligent fault diagnosis and elimination in power distribution systems.
基金supported by the National Natural Science Foundation of China (Nos.62006099,62076111)the Key Laboratory of Oceanographic Big Data Mining&Application of Zhejiang Province (No.OBDMA202104).
文摘Attribute reduction,as one of the essential applications of the rough set,has attracted extensive attention from scholars.Information granulation is a key step of attribute reduction,and its efficiency has a significant impact on the overall efficiency of attribute reduction.The information granulation of the existing neighborhood rough set models is usually a single layer,and the construction of each information granule needs to search all the samples in the universe,which is inefficient.To fill such gap,a new neighborhood rough set model is proposed,which aims to improve the efficiency of attribute reduction by means of two-layer information granulation.The first layer of information granulation constructs a mapping-equivalence relation that divides the universe into multiple mutually independent mapping-equivalence classes.The second layer of information granulation views each mapping-equivalence class as a sub-universe and then performs neighborhood informa-tion granulation.A model named mapping-equivalence neighborhood rough set model is derived from the strategy of two-layer information granulation.Experimental results show that compared with other neighborhood rough set models,this model can effectively improve the efficiency of attribute reduction and reduce the uncertainty of the system.The strategy provides a new thinking for the exploration of neighborhood rough set models and the study of attribute reduction acceleration problems.
基金support by the National Natural Science Foundation of China(NSFC)under grant number 61873274.
文摘Contrastive self‐supervised representation learning on attributed graph networks with Graph Neural Networks has attracted considerable research interest recently.However,there are still two challenges.First,most of the real‐word system are multiple relations,where entities are linked by different types of relations,and each relation is a view of the graph network.Second,the rich multi‐scale information(structure‐level and feature‐level)of the graph network can be seen as self‐supervised signals,which are not fully exploited.A novel contrastive self‐supervised representation learning framework on attributed multiplex graph networks with multi‐scale(named CoLM^(2)S)information is presented in this study.It mainly contains two components:intra‐relation contrast learning and interrelation contrastive learning.Specifically,the contrastive self‐supervised representation learning framework on attributed single‐layer graph networks with multi‐scale information(CoLMS)framework with the graph convolutional network as encoder to capture the intra‐relation information with multi‐scale structure‐level and feature‐level selfsupervised signals is introduced first.The structure‐level information includes the edge structure and sub‐graph structure,and the feature‐level information represents the output of different graph convolutional layer.Second,according to the consensus assumption among inter‐relations,the CoLM^(2)S framework is proposed to jointly learn various graph relations in attributed multiplex graph network to achieve global consensus node embedding.The proposed method can fully distil the graph information.Extensive experiments on unsupervised node clustering and graph visualisation tasks demonstrate the effectiveness of our methods,and it outperforms existing competitive baselines.
基金The National Key Research and Development Program of China(No.2016YFB0500304)The Fund of Beijing Key Laboratory of Urban Spatial Information Engineering(No.2017212)The Advanced Project of Urban Design Big Data Acquisition and Processing(30059917306)
文摘Dense matching of remote sensing images is a key step in the generation of accurate digital surface models.The semi-global matching algorithm comprehensively considers the advantages and disadvantages of local matching and global matching in terms of matching effect and computational efficiency,so it is widely used in close-range,aerial and satellite image matching.Based on the analysis of the original semi-global matching algorithm,this paper proposes a semi-global high-resolution remote sensing image that takes into account the geometric constraints of the connection points and the image texture information based on the large amount of high-resolution remote sensing image data and the characteristics of clear image texture.The method includes 4 parts:(1)Precise orientation.Aiming at the system error in the image orientation model,the system error of the rational function model is compensated by the geometric constraint relationship of the connecting points between the images,and the sub-pixel positioning accuracy is obtained;(2)Epipolar image generation.After the original image is divided into blocks,the epipolar image is generated based on the projection trajectory method;(3)Image dense matching.In order to reduce the size of the cost space and calculation time,the image is pyramided and then semi-globally matched layer by layer.In the matching process,the disparity map expansion and erosion algorithm that takes into account the image texture information is introduced to restrict the disparity search range and better retain the edge characteristics of the ground objects;(4)Generate DSM.In order to test the matching effect,the weighted median filter algorithm is used to filter the disparity map,and the DSM is obtained based on the principle of forward intersection.Finally,the paper uses the matching results of WordView3 and Ziyuan No.3 stereo image to verify the effectiveness of this method.
基金National Natural Science Foundation of China(No.61971121)。
文摘Clothing attribute recognition has become an essential technology,which enables users to automatically identify the characteristics of clothes and search for clothing images with similar attributes.However,existing methods cannot recognize newly added attributes and may fail to capture region-level visual features.To address the aforementioned issues,a region-aware fashion contrastive language-image pre-training(RaF-CLIP)model was proposed.This model aligned cropped and segmented images with category and multiple fine-grained attribute texts,achieving the matching of fashion region and corresponding texts through contrastive learning.Clothing retrieval found suitable clothing based on the user-specified clothing categories and attributes,and to further improve the accuracy of retrieval,an attribute-guided composed network(AGCN)as an additional component on RaF-CLIP was introduced,specifically designed for composed image retrieval.This task aimed to modify the reference image based on textual expressions to retrieve the expected target.By adopting a transformer-based bidirectional attention and gating mechanism,it realized the fusion and selection of image features and attribute text features.Experimental results show that the proposed model achieves a mean precision of 0.6633 for attribute recognition tasks and a recall@10(recall@k is defined as the percentage of correct samples appearing in the top k retrieval results)of 39.18 for composed image retrieval task,satisfying user needs for freely searching for clothing through images and texts.
基金Supported by the Fund for Basic Research of National Non-Profit Research Institutes(No.XK2012-2,ZD2012-7-2)the Fund for Preresearch Project of ISTIC(No.YY201208)
文摘Similarity matching and this paper, a saliency-based information presentation are two matching algorithm is proposed key factors in information retrieval. In for user-oriented search based on the psychological studies on human perception, and major emphasis on the saliently similar aspect of objects to be compared is placed and thus the search result is more agreeable for users. After relevant results are obtained, the cluster-based browsing algorithm is adopted for search result presentation based on social network analysis. By organizing the results in clustered lists, the user can have a general understanding of the whole collection by viewing only a small part of results and locate those of major interest rapidly. Experimental results demonstrate the advantages of the proposed algorithm over the traditional work.
文摘The naïve Bayes classifier is one of the commonly used data mining methods for classification.Despite its simplicity,naïve Bayes is effective and computationally efficient.Although the strong attribute independence assumption in the naïve Bayes classifier makes it a tractable method for learning,this assumption may not hold in real-world applications.Many enhancements to the basic algorithm have been proposed in order to alleviate the violation of attribute independence assumption.While these methods improve the classification performance,they do not necessarily retain the mathematical structure of the naïve Bayes model and some at the expense of computational time.One approach to reduce the naïvetéof the classifier is to incorporate attribute weights in the conditional probability.In this paper,we proposed a method to incorporate attribute weights to naïve Bayes.To evaluate the performance of our method,we used the public benchmark datasets.We compared our method with the standard naïve Bayes and baseline attribute weighting methods.Experimental results show that our method to incorporate attribute weights improves the classification performance compared to both standard naïve Bayes and baseline attribute weighting methods in terms of classification accuracy and F1,especially when the independence assumption is strongly violated,which was validated using the Chi-square test of independence.
基金been supported by Project of the National Natural Science Foundation of China(No.62073256)the Shaanxi Provincial Science and Technology Department(No.2020GY-125)Xi’an Science and Technology Innovation talent service enterprise project(No.2020KJRC0041)。
文摘The dynamic parameters of multiple projectiles that are fired using multi-barrel weapons in highfrequency continuous firing modes are important indicators to measure the performance of these weapons.The characteristics of multiple projectiles are high randomness and large numbers launched in a short period of time,making it very difficult to obtain the real dispersion parameters of the projectiles due to the occlusion or coincidence of multiple projectiles.Using six intersecting-screen testing system,in this paper,we propose an association recognition and matching algorithm of multiple projectiles using a temporal and spatial information constraint mechanism.We extract the output signal from each detection screen and then use the wavelet transform to process the output signal.We present a method to identify and extract the time values on which the projectiles pass through the detection screens using the wavelet transform modulus maximum theory.We then use the correlation of the output signals of three parallel detection screens to establish a correlation coefficient recognition constraint function for the multiple projectiles.Based on the premise of linear projectile motion,we establish a temporal and spatial constraint matching model using the projectile’s position coordinates in each detection screen and the projectile’s time constraints within the multiple intersecting-screen geometry.We then determine the time values of the multiple projectiles in each detection screen using an iterative search cycle registration,and finally obtain the flight parameters for the multiple projectiles in the presence of uncertainty.The proposed method and algorithm were verified experimentally and can solve the problem of uncertainty in projectiles flight parameter under different multiple projectile firing states.
文摘For the past three decades, interoperability among heterogeneous systems had been a hard nut to crack due to the schematic and semantic perspectives that exist between objects. These systems were built under different data models. As such, levels of the local schemas are semantically very poor due to the limited expressiveness of traditional data models in which they were designed. Further more, most of the existing schema integration architectural components are inadequately equipped to handle the mapping schemas, especially when the semantics and structural conflicts are involved. This paper introduces an Intelligent Binary Schema Matching system (IBSMS), which exploits the phenomenon of making its components intelligent. That’s equipping its components such as translators and integrators with adequate knowledge about various data models. This allows the components acquire enough intelligence to maneuver or manipulate the correspondence between constructs from different models. In addition, the system has a Binary Matcher, which compares the attribute correspondences of various databases in a pairwise form, in order to establish the equivalences. With the establishment of the mappings, the users shall be able to access them (mappings) for their desired usage.
基金Sponsored by the National Natural Science Foundation of China(60372042)
文摘Identifying speed,tag average response times and reliability are the most important capabilities in passive RFID(radio frequency identification) system.QT(query tree) is a famous algorithm for lowest-cost RFID tags,but its shortcoming is high searching delay and high tag average response times.A prefix subsection matching binary(PSMB) algorithm based on QTalgorithm is proposed.The key idea of PSMB anti-collision algorithm is that,during searching phase,a given reader uses the particular tags ID,which has been searched out formerly,to shorten searching delay and depress tag average response times.The idea of PSMB algorithm can be described as follows.Usually,tag ID is composed of several subsections which have different meanings.Based on the tags ID searched out formerly,a given reader builds a prefix database.In subsequent searching phase,the reader uses its prefix database to deduce searching space of tag ID.Simulation results show that identification delay of PSMB algorithm is about 1/3 of QTalgorithm,tag average response times is about 1/4 of QTalgorithm,and system throughput rate is treble QTalgorithm.