期刊文献+
共找到2,059篇文章
< 1 2 103 >
每页显示 20 50 100
Attribute Reduction of Neighborhood Rough Set Based on Discernment
1
作者 Biqing Wang 《Journal of Electronic Research and Application》 2024年第1期80-85,共6页
For neighborhood rough set attribute reduction algorithms based on dependency degree,a neighborhood computation method incorporating attribute weight values and a neighborhood rough set attribute reduction algorithm u... For neighborhood rough set attribute reduction algorithms based on dependency degree,a neighborhood computation method incorporating attribute weight values and a neighborhood rough set attribute reduction algorithm using discernment as the heuristic information was proposed.The reduction algorithm comprehensively considers the dependency degree and neighborhood granulation degree of attributes,allowing for a more accurate measurement of the importance degrees of attributes.Example analyses and experimental results demonstrate the feasibility and effectiveness of the algorithm. 展开更多
关键词 Neighborhood rough set attribute reduction DISCERNMENT ALGORITHM
下载PDF
Attribute Reduction of Hybrid Decision Information Systems Based on Fuzzy Conditional Information Entropy 被引量:1
2
作者 Xiaoqin Ma Jun Wang +1 位作者 Wenchang Yu Qinli Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第5期2063-2083,共21页
The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attr... The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data. 展开更多
关键词 Hybrid decision information systems fuzzy conditional information entropy attribute reduction fuzzy relationship rough set theory(RST)
下载PDF
A Method of Attribute Reduction Based on Rough Set 被引量:3
3
作者 李昌彪 宋建平 《Journal of Electronic Science and Technology of China》 2005年第3期234-237,共4页
The logging attribute optimization is an important task in the well-logging interpretation. A method of attribute reduction is presented based on rough set. Firstly, the core information of the sample by a general red... The logging attribute optimization is an important task in the well-logging interpretation. A method of attribute reduction is presented based on rough set. Firstly, the core information of the sample by a general reductive method is determined. Then, the significance of dispensable attribute in the reduction-table is calculated. Finally, the minimum relative reduction set is achieved. The typical calculation and quantitative computation of reservoir parameter in oil logging show that the method of attribute reduction is greatly effective and feasible in logging interpretation. 展开更多
关键词 rough set attribute reduction quantitative computation oil logging interpretation
下载PDF
Cooperative extended rough attribute reduction algorithm based on improved PSO 被引量:10
4
作者 Weiping Ding Jiandong Wang Zhijin Guan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期160-166,共7页
Particle swarm optimization (PSO) is a new heuristic algorithm which has been applied to many optimization problems successfully. Attribute reduction is a key studying point of the rough set theory, and it has been ... Particle swarm optimization (PSO) is a new heuristic algorithm which has been applied to many optimization problems successfully. Attribute reduction is a key studying point of the rough set theory, and it has been proven that computing minimal reduc- tion of decision tables is a non-derterministic polynomial (NP)-hard problem. A new cooperative extended attribute reduction algorithm named Co-PSAR based on improved PSO is proposed, in which the cooperative evolutionary strategy with suitable fitness func- tions is involved to learn a good hypothesis for accelerating the optimization of searching minimal attribute reduction. Experiments on Benchmark functions and University of California, Irvine (UCI) data sets, compared with other algorithms, verify the superiority of the Co-PSAR algorithm in terms of the convergence speed, efficiency and accuracy for the attribute reduction. 展开更多
关键词 rough set extended attribute reduction particle swarm optimization (PSO) cooperative evolutionary strategy fitness function.
下载PDF
Attribute Reduction on Decision Tables Based on Hausdorff Topology
5
作者 Nguyen Long Giang Tran Thanh Dai +3 位作者 Le Hoang Son Tran Thi Ngan Nguyen Nhu Son Cu Nguyen Giap 《Computers, Materials & Continua》 SCIE EI 2024年第11期3097-3124,共28页
Attribute reduction through the combined approach of Rough Sets(RS)and algebraic topology is an open research topic with significant potential for applications.Several research works have introduced a strong relations... Attribute reduction through the combined approach of Rough Sets(RS)and algebraic topology is an open research topic with significant potential for applications.Several research works have introduced a strong relationship between RS and topology spaces for the attribute reduction problem.However,the mentioned recent methods followed a strategy to construct a new measure for attribute selection.Meanwhile,the strategy for searching for the reduct is still to select each attribute and gradually add it to the reduct.Consequently,those methods tended to be inefficient for high-dimensional datasets.To overcome these challenges,we use the separability property of Hausdorff topology to quickly identify distinguishable attributes,this approach significantly reduces the time for the attribute filtering stage of the algorithm.In addition,we propose the concept of Hausdorff topological homomorphism to construct candidate reducts,this method significantly reduces the number of candidate reducts for the wrapper stage of the algorithm.These are the two main stages that have the most effect on reducing computing time for the attribute reduction of the proposed algorithm,which we call the Cluster Filter Wrapper algorithm based on Hausdorff Topology.Experimental validation on the UCI Machine Learning Repository Data shows that the proposed method achieves efficiency in both the execution time and the size of the reduct. 展开更多
关键词 Hausdorff topology rough sets topology from rough sets attribute reduction
下载PDF
Attribute reduction based on background knowledge and its application in classification of astronomical spectra data 被引量:2
6
作者 张继福 Li Yinhua Zhang Sulan 《High Technology Letters》 EI CAS 2007年第4期422-427,共6页
To improve the efficiency of the attribute reduction, we present an attribute reduction algorithm based on background knowledge and information entropy by making use of background knowledge from research fields. Under... To improve the efficiency of the attribute reduction, we present an attribute reduction algorithm based on background knowledge and information entropy by making use of background knowledge from research fields. Under the condition of known background knowledge, the algorithm can not only greatly improve the efficiency of attribute reduction, but also avoid the defection of information entropy partial to attribute with much value. The experimental result verifies that the algorithm is effective. In the end, the algorithm produces better results when applied in the classification of the star spectra data. 展开更多
关键词 rough set theory background knowledge intbrmation entropy attribute reduction astronomical spectra data
下载PDF
Application of Attribute Reduction to Well Logging
7
作者 Li Changbiao Song Jianping Xia Kewen 《Petroleum Science》 SCIE CAS CSCD 2005年第4期30-33,共4页
The quantity of well logging data is increasing exponentially, hence methods of extracting the useful information or attribution from the logging database are becoming very important in logging interpretation. So, the... The quantity of well logging data is increasing exponentially, hence methods of extracting the useful information or attribution from the logging database are becoming very important in logging interpretation. So, the method of logging attribute reduction is presented based on a rough set, i.e., first determining the core of the information table, then calculating the significance of each attribute, and finally obtaining the relative reduction table. The application result shows that the method of attribute reduction is feasible and can be used for optimizing logging attributes, and decreasing redundant logging information to a great extent. 展开更多
关键词 rough set attribute reduction oil logging
下载PDF
Numerical Characterizations of Covering Rough Sets Based on Evidence Theory
8
作者 CHEN Degang ZHANG Xiao 《浙江海洋学院学报(自然科学版)》 CAS 2010年第5期416-419,共4页
Covering rough sets are improvements of traditional rough sets by considering cover of universe instead of partition.In this paper,we develop several measures based on evidence theory to characterize covering rough se... Covering rough sets are improvements of traditional rough sets by considering cover of universe instead of partition.In this paper,we develop several measures based on evidence theory to characterize covering rough sets.First,we present belief and plausibility functions in covering information systems and study their properties.With these measures we characterize lower and upper approximation operators and attribute reductions in covering information systems and decision systems respectively.With these discussions we propose a basic framework of numerical characterizations of covering rough sets. 展开更多
关键词 Covering rough sets attribute reduction Belief and plausibility functions Evidence theory
下载PDF
Fault Attribute Reduction of Oil Immersed Transformer Based on Improved Imperialist Competitive Algorithm
9
作者 Li Bian Hui He +1 位作者 Hongna Sun Wenjing Liu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2020年第6期83-90,共8页
The original fault data of oil immersed transformer often contains a large number of unnecessary attributes,which greatly increases the elapsed time of the algorithm and reduces the classification accuracy,leading to ... The original fault data of oil immersed transformer often contains a large number of unnecessary attributes,which greatly increases the elapsed time of the algorithm and reduces the classification accuracy,leading to the rise of the diagnosis error rate.Therefore,in order to obtain high quality oil immersed transformer fault attribute data sets,an improved imperialist competitive algorithm was proposed to optimize the rough set to discretize the original fault data set and the attribute reduction.The feasibility of the proposed algorithm was verified by experiments and compared with other intelligent algorithms.Results show that the algorithm was stable at the 27th iteration with a reduction rate of 56.25%and a reduction accuracy of 98%.By using BP neural network to classify the reduction results,the accuracy was 86.25%,and the overall effect was better than those of the original data and other algorithms.Hence,the proposed method is effective for fault attribute reduction of oil immersed transformer. 展开更多
关键词 transformer fault improved imperialist competitive algorithm rough set attribute reduction BP neural network
下载PDF
An Innovative Approach for Attribute Reduction in Rough Set Theory
10
作者 Alex Sandro Aguiar Pessoa Stephan Stephany 《Intelligent Information Management》 2014年第5期223-239,共17页
The Rough Sets Theory is used in data mining with emphasis on the treatment of uncertain or vague information. In the case of classification, this theory implicitly calculates reducts of the full set of attributes, el... The Rough Sets Theory is used in data mining with emphasis on the treatment of uncertain or vague information. In the case of classification, this theory implicitly calculates reducts of the full set of attributes, eliminating those that are redundant or meaningless. Such reducts may even serve as input to other classifiers other than Rough Sets. The typical high dimensionality of current databases precludes the use of greedy methods to find optimal or suboptimal reducts in the search space and requires the use of stochastic methods. In this context, the calculation of reducts is typically performed by a genetic algorithm, but other metaheuristics have been proposed with better performance. This work proposes the innovative use of two known metaheuristics for this calculation, the Variable Neighborhood Search, the Variable Neighborhood Descent, besides a third heuristic called Decrescent Cardinality Search. The last one is a new heuristic specifically proposed for reduct calculation. Considering some databases commonly found in the literature of the area, the reducts that have been obtained present lower cardinality, i.e., a lower number of attributes. 展开更多
关键词 rough SET Theory REDUCTS attribute reduction Metaheuristics
下载PDF
Application of Rough Sets to Evaluate Fabric Smoothness Grade
11
作者 陈慧敏 张渭源 顾洪波 《Journal of Donghua University(English Edition)》 EI CAS 2009年第4期356-360,共5页
For garment or fabric appearance, the cloth smoothness grade is one of the most important performance factors in textile and garment community. In this paper, on the base of Rough Set Theory,a new objective method for... For garment or fabric appearance, the cloth smoothness grade is one of the most important performance factors in textile and garment community. In this paper, on the base of Rough Set Theory,a new objective method for fabric smoothness grade evaluation was constructed. The objective smoothness grading model took the parameters of 120 AATCC replicas' point-sampled models as the conditional attributes and formed the smoothness grading decision table. Then, NS discretization method and genetic algorithm reduction method were used in the attributes discretization and feature reduction. Finally, the grading model was expressed as simple and intuitional classification rules. The simulation results show the validity of the fabric smoothness grading system which is built on the use of rough sets. 展开更多
关键词 FABRIC smoothness grade rough Set Theoryattributes discretization attributes reduction
下载PDF
Two-Layer Information Granulation:Mapping-Equivalence Neighborhood Rough Set and Its Attribute Reduction
12
作者 Changshun Liu Yan Liu +1 位作者 Jingjing Song Taihua Xu 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期2059-2075,共17页
Attribute reduction,as one of the essential applications of the rough set,has attracted extensive attention from scholars.Information granulation is a key step of attribute reduction,and its efficiency has a significa... Attribute reduction,as one of the essential applications of the rough set,has attracted extensive attention from scholars.Information granulation is a key step of attribute reduction,and its efficiency has a significant impact on the overall efficiency of attribute reduction.The information granulation of the existing neighborhood rough set models is usually a single layer,and the construction of each information granule needs to search all the samples in the universe,which is inefficient.To fill such gap,a new neighborhood rough set model is proposed,which aims to improve the efficiency of attribute reduction by means of two-layer information granulation.The first layer of information granulation constructs a mapping-equivalence relation that divides the universe into multiple mutually independent mapping-equivalence classes.The second layer of information granulation views each mapping-equivalence class as a sub-universe and then performs neighborhood informa-tion granulation.A model named mapping-equivalence neighborhood rough set model is derived from the strategy of two-layer information granulation.Experimental results show that compared with other neighborhood rough set models,this model can effectively improve the efficiency of attribute reduction and reduce the uncertainty of the system.The strategy provides a new thinking for the exploration of neighborhood rough set models and the study of attribute reduction acceleration problems. 展开更多
关键词 attribute reduction information granulation mapping-equiva-lence relation neighborhood rough set
下载PDF
A Neighborhood Rough Set Attribute Reduction Method Based on Attribute Importance
13
作者 Peiyu Su Feng Qin Fu Li 《American Journal of Computational Mathematics》 2023年第4期578-593,共16页
Attribute reduction is a hot topic in rough set research. As an extension of rough sets, neighborhood rough sets can effectively solve the problem of information loss after data discretization. However, traditional gr... Attribute reduction is a hot topic in rough set research. As an extension of rough sets, neighborhood rough sets can effectively solve the problem of information loss after data discretization. However, traditional greedy-based neighborhood rough set attribute reduction algorithms have a high computational complexity and long processing time. In this paper, a novel attribute reduction algorithm based on attribute importance is proposed. By using conditional information, the attribute reduction problem in neighborhood rough sets is discussed, and the importance of attributes is measured by conditional information gain. The algorithm iteratively removes the attribute with the lowest importance, thus achieving the goal of attribute reduction. Six groups of UCI datasets are selected, and the proposed algorithm SAR is compared with L<sub>2</sub>-ELM, LapTELM, CTSVM, and TBSVM classifiers. The results demonstrate that SAR can effectively improve the time consumption and accuracy issues in attribute reduction. 展开更多
关键词 rough sets attribute Importance attribute reduction
下载PDF
Core Competitiveness Evaluation of Financial Institution with Rough Sets and Gray Correlation Analysis
14
作者 蔡红 翟育明 孙天慧 《Journal of Donghua University(English Edition)》 EI CAS 2016年第4期640-643,共4页
The comprehensive evaluation method of enterprise core competitiveness is proposed by combining rough sets and gray correlation theories. Firstly,the initial index is screened through rough set attribute reduction alg... The comprehensive evaluation method of enterprise core competitiveness is proposed by combining rough sets and gray correlation theories. Firstly,the initial index is screened through rough set attribute reduction algorithm,and the evaluation weight of each index is obtained through the rough set theory. Then,based on the gray correlation theory, an evaluation model is built for empirical analysis. The 30 financial institutions on the Yangtze River Delta are examined from the theoretical and empirical perspective.The result demonstrates not only the feasibility of rough set attribute reduction algorithm in the core competitiveness index system of the financial institution,but also the accuracy of the combination of these two methods in the comprehensive evaluation of corporate core competitiveness. 展开更多
关键词 Correlation attribute institutions empirical Institution partition Yangtze maintain performing steps
下载PDF
基于Rough Sets的中医指症挖掘研究与应用 被引量:2
15
作者 丁卫平 管致锦 顾春华 《计算机工程与应用》 CSCD 北大核心 2008年第7期234-237,共4页
针对中医病历数据库中指症样本维数较大、数据特征和属性冗余量较多等特征,在对Rough Sets基本理论和属性约简算法研究的基础上,提出了将属性频度和属性重要性相结合的GENRED_GROWTH中医指症挖掘算法,并进行了基于GENRED_GROWTH的中医... 针对中医病历数据库中指症样本维数较大、数据特征和属性冗余量较多等特征,在对Rough Sets基本理论和属性约简算法研究的基础上,提出了将属性频度和属性重要性相结合的GENRED_GROWTH中医指症挖掘算法,并进行了基于GENRED_GROWTH的中医指症挖掘原型系统设计与实现。通过分析和实验结果表明:该算法能较好地进行中医指症属性约简,分类精度较高,并且能抽取中医指症相关诊断规则以辅助医生的诊断和治疗。 展开更多
关键词 rough sets 属性约简 中医指症 数据挖掘
下载PDF
基于Rough Sets-C4.5的故障征兆提取与判别 被引量:1
16
作者 王庆 巴德纯 孟祥志 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第10期1138-1141,共4页
针对原始信息系统往往存在大量重复样本和冗余属性,从而影响实际故障诊断的精度和速度这一问题,介绍了一种基于粗糙集和决策树C4.5算法相融合的故障诊断模型,用于设备的精确和快速故障诊断.利用粗糙集具有较强的处理不确定和不完备信息... 针对原始信息系统往往存在大量重复样本和冗余属性,从而影响实际故障诊断的精度和速度这一问题,介绍了一种基于粗糙集和决策树C4.5算法相融合的故障诊断模型,用于设备的精确和快速故障诊断.利用粗糙集具有较强的处理不确定和不完备信息的能力,对原始样本集进行离散化及约简处理;同时,利用决策树C4.5算法对约简后的决策表进行快速学习并形成树状故障分类器.以实例介绍了利用该模型进行故障诊断的完整过程. 展开更多
关键词 粗糙集 属性 约简 决策树 故障诊断
下载PDF
Improved Rough Set Algorithms for Optimal Attribute Reduct 被引量:1
17
作者 C.Velayutham K.Thangavel 《Journal of Electronic Science and Technology》 CAS 2011年第2期108-117,共10页
Feature selection(FS) aims to determine a minimal feature(attribute) subset from a problem domain while retaining a suitably high accuracy in representing the original features. Rough set theory(RST) has been us... Feature selection(FS) aims to determine a minimal feature(attribute) subset from a problem domain while retaining a suitably high accuracy in representing the original features. Rough set theory(RST) has been used as such a tool with much success. RST enables the discovery of data dependencies and the reduction of the number of attributes contained in a dataset using the data alone,requiring no additional information. This paper describes the fundamental ideas behind RST-based approaches,reviews related FS methods built on these ideas,and analyses more frequently used RST-based traditional FS algorithms such as Quickreduct algorithm,entropy based reduct algorithm,and relative reduct algorithm. It is found that some of the drawbacks in the existing algorithms and our proposed improved algorithms can overcome these drawbacks. The experimental analyses have been carried out in order to achieve the efficiency of the proposed algorithms. 展开更多
关键词 Data mining entropy based reduct Quickreduct relative reduct rough set selection of attributes
下载PDF
Support vector machine ensemble using rough sets theory 被引量:1
18
作者 胡中辉 Cai Yunze He Xing Xu Xiaoming 《High Technology Letters》 EI CAS 2006年第1期58-62,共5页
A support vector machine (SVM) ensemble classifier is proposed. Performance of SVM trained in an input space eonsisting of all the information from many sources is not always good. The strategy that the original inp... A support vector machine (SVM) ensemble classifier is proposed. Performance of SVM trained in an input space eonsisting of all the information from many sources is not always good. The strategy that the original input space is partitioned into several input subspaces usually works for improving the performance. Different from conventional partition methods, the partition method used in this paper, rough sets theory based attribute reduction, allows the input subspaces partially overlapped. These input subspaces can offer complementary information about hidden data patterns. In every subspace, an SVM sub-classifier is learned. With the information fusion techniques, those SVM sub-classifiers with better performance are selected and combined to construct an SVM ensemble. The proposed method is applied to decision-making of medical diagnosis. Comparison of performance between our method and several other popular ensemble methods is done. Experimental results demonstrate that our proposed approach can make full use of the information contained in data and improve the decision-making performance. 展开更多
关键词 support vector machines rough sets ENSEMBLE attribute reduction decision fusion
下载PDF
Attribute Reduction Based on Inclusion Degree for Incomplete and Fuzzy Decision Information Systems 被引量:1
19
作者 Dakuan Wei Lujin Tang 《通讯和计算机(中英文版)》 2006年第5期22-28,共7页
关键词 自扩充翻译程序 程序级别 模糊数据 数据结构
下载PDF
Clustering of Web Learners Based on Rough Set
20
作者 LIUShuai-dong CHENShi-hong 《Wuhan University Journal of Natural Sciences》 EI CAS 2004年第5期542-546,共5页
The demand for individualized teaching from E-learning websites is rapidly increasing due to the huge differences existed among Web learners. A method for clustering Web learners based on rough set is proposed. The ba... The demand for individualized teaching from E-learning websites is rapidly increasing due to the huge differences existed among Web learners. A method for clustering Web learners based on rough set is proposed. The basic idea of the method is to reduce the learning attributes prior to clustering, and therefore the clustering of Web learners is carried out in a relative low-dimensional space. Using this method, the E-learning websites can arrange corresponding teaching content for different clusters of learners so that the learners’ individual requirements can be more satisfied. Key words rough set - attributes reduction - k-means clustering - individualized teaching CLC number TP 391.6 Foundation item: Supported by the National “863” Program of China (2002AA111010, 2003AA001032)Biography: LIU Shuai-dong (1979-), male, Master candidate, research direction: knowledge discovery and individualized learning techniques. 展开更多
关键词 rough set attributes reduction k-means clustering individualized teaching
下载PDF
上一页 1 2 103 下一页 到第
使用帮助 返回顶部