Reservoir heterogeneities play a crucial role in governing reservoir performance and management.Traditionally,detailed and inter-well heterogeneity analyses are commonly performed by mapping seismic facies change in t...Reservoir heterogeneities play a crucial role in governing reservoir performance and management.Traditionally,detailed and inter-well heterogeneity analyses are commonly performed by mapping seismic facies change in the seismic data,which is a time-intensive task.Many researchers have utilized a robust Grey-level co-occurrence matrix(GLCM)-based texture attributes to map reservoir heterogeneity.However,these attributes take seismic data as input and might not be sensitive to lateral lithology variation.To incorporate the lithology information,we have developed an innovative impedance-based texture approach using GLCM workflow by integrating 3D acoustic impedance volume(a rock propertybased attribute)obtained from a deep convolution network-based impedance inversion.Our proposed workflow is anticipated to be more sensitive toward mapping lateral changes than the conventional amplitude-based texture approach,wherein seismic data is used as input.To evaluate the improvement,we applied the proposed workflow to the full-stack 3D seismic data from the Poseidon field,NW-shelf,Australia.This study demonstrates that a better demarcation of reservoir gas sands with improved lateral continuity is achievable with the presented approach compared to the conventional approach.In addition,we assess the implication of multi-stage faulting on facies distribution for effective reservoir characterization.This study also suggests a well-bounded potential reservoir facies distribution along the parallel fault lines.Thus,the proposed approach provides an efficient strategy by integrating the impedance information with texture attributes to improve the inference on reservoir heterogeneity,which can serve as a promising tool for identifying potential reservoir zones for both production benefits and fluid storage.展开更多
Canopy and branch architectures in high-density orchards can be crucial in production and fruit quality. The influence of two canopy orientations (Upright and Tilted) in combination with two arm (branch) architectures...Canopy and branch architectures in high-density orchards can be crucial in production and fruit quality. The influence of two canopy orientations (Upright and Tilted) in combination with two arm (branch) architectures (Shortened or Overlapped) on tree growth, yield components, fruit quality, and leaf mineral nutrients in an “Aztec Fuji” apple (Malus domestica Bork.) high-density orchard was studied over five years. Tilted trees with shortened arm configuration (TilShArm) always had significantly larger trunk cross-sectional area (TCSA) than Upright trees with an Overlapped arm configuration (UpOverArm) every year from 2012 to 2016. Trees with a TilShArm system had more cumulative fruit per tree than those with an Upright orientation. Trees with a tilted canopy (TilShArm and TilOverArm) tended to have higher yield per tree and yield per hectare than those with an upright system. Trees with a TilShArm system were more precocious and had more yield per tree than those with an upright canopy orientation in 2012. When values were polled over five years, trees with an upright canopy-shortened arm system (UpShArm) treatment had a lower biennial bearing index (BBI) than those with an upright canopy-overlapped system (UpOverArm). Trees receiving an arm shortening (UpShArm or TilShArm) configuration often had larger fruits than those with overlapped arms (UpOverArm and TilOverArm). Fruit from trees receiving an UpOverArm had higher fruit firmness than those from trees with other canopy-branch arrangements at harvest due to their smaller size. Fruit from trees with a TilShArm and TilOverArm had significantly higher water core and bitter pit but lower sunburn than trees with an upright canopy (UpShArm and UpOverArm). Leaves from trees with an UpOverArm canopy-branch configuration had the lowest leaf Ca but the highest leaf K and Fe concentrations among all treatments.展开更多
Due to the complexity and variability of carbonate formation leakage zones, lost circulation prediction and control is one of the major challenges of carbonate drilling. It raises well-control risks and production exp...Due to the complexity and variability of carbonate formation leakage zones, lost circulation prediction and control is one of the major challenges of carbonate drilling. It raises well-control risks and production expenses. This research utilizes the H oilfield as an example, employs seismic features to analyze mud loss prediction, and produces a complete set of pre-drilling mud loss prediction solutions. Firstly, 16seismic attributes are calculated based on the post-stack seismic data, and the mud loss rate per unit footage is specified. The sample set is constructed by extracting each attribute from the seismic trace surrounding 15 typical wells, with a ratio of 8:2 between the training set and the test set. With the calibration results for mud loss rate per unit footage, the nonlinear mapping relationship between seismic attributes and mud loss rate per unit size is established using the mixed density network model.Then, the influence of the number of sub-Gausses and the uncertainty coefficient on the model's prediction is evaluated. Finally, the model is used in conjunction with downhole drilling conditions to assess the risk of mud loss in various layers and along the wellbore trajectory. The study demonstrates that the mean relative errors of the model for training data and test data are 6.9% and 7.5%, respectively, and that R2is 90% and 88%, respectively, for training data and test data. The accuracy and efficacy of mud loss prediction may be greatly enhanced by combining 16 seismic attributes with the mud loss rate per unit footage and applying machine learning methods. The mud loss prediction model based on the MDN model can not only predict the mud loss rate but also objectively evaluate the prediction based on the quality of the data and the model.展开更多
Forests,the largest terrestrial carbon sinks,play an important role in carbon sequestration and climate change mitigation.Although forest attributes and environmental factors have been shown to impact aboveground biom...Forests,the largest terrestrial carbon sinks,play an important role in carbon sequestration and climate change mitigation.Although forest attributes and environmental factors have been shown to impact aboveground biomass,their influence on biomass stocks in species-rich forests in southern China,a biodiversity hotspot,has rarely been investigated.In this study,we characterized the effects of environmental factors,forest structure,and species diversity on aboveground biomass stocks of 30 plots(1 ha each) in natural forests located within seven nature reserves distributed across subtropical and marginal tropical zones in Guangxi,China.Our results indicate that forest aboveground biomass stocks in this region are lower than those in mature tropical and subtropical forests in other regions.Furthermore,we found that aboveground biomass was positively correlated with stand age,mean annual precipitation,elevation,structural attributes and species richness,although not with species evenness.When we compared stands with the same basal area,we found that aboveground biomass stock was higher in communities with a higher coefficient of variation of diameter at breast height.These findings highlight the importance of maintaining forest structural diversity and species richness to promote aboveground biomass accumulation and reveal the potential impacts of precipitation changes resulting from climate warming on the ecosystem services of subtropical and northern tropical forests in China.Notably,many natural forests in southern China are not fully stocked.Therefore,their continued growth will increase their carbon storage over time.展开更多
The technological revolution has spawned a new generation of industrial systems,but it has also put forward higher requirements for safety management accuracy,timeliness,and systematicness.Risk assessment needs to evo...The technological revolution has spawned a new generation of industrial systems,but it has also put forward higher requirements for safety management accuracy,timeliness,and systematicness.Risk assessment needs to evolve to address the existing and future challenges by considering the new demands and advancements in safety management.The study aims to propose a systematic and comprehensive risk assessment method to meet the needs of process system safety management.The methodology first incorporates possibility,severity,and dynamicity(PSD)to structure the“51X”evaluation indicator system,including the inherent,management,and disturbance risk factors.Subsequently,the four-tier(risk point-unit-enterprise-region)risk assessment(RA)mathematical model has been established to consider supervision needs.And in conclusion,the application of the PSD-RA method in ammonia refrigeration workshop cases and safety risk monitoring systems is presented to illustrate the feasibility and effectiveness of the proposed PSD-RA method in safety management.The findings show that the PSD-RA method can be well integrated with the needs of safety work informatization,which is also helpful for implementing the enterprise's safety work responsibility and the government's safety supervision responsibility.展开更多
This resolution 5 (25−1 factorial) study aimed to ascertain an understanding of the interactions between different geometries on the resulting Radar Cross Section (RCS) of a target. The results of the study are in lin...This resolution 5 (25−1 factorial) study aimed to ascertain an understanding of the interactions between different geometries on the resulting Radar Cross Section (RCS) of a target. The results of the study are in line with the general understanding of the impact different geometries have on RCS but show that geometries can also influence the variance of measured RCS, and typical attributes that reduce RCS increase the variance of the measured RCS. Notably, an increased angle between the front face of a plate and the direction of the radar signal decreased RCS but increased the variance of the RCS measured.展开更多
The domestic space can be defined as the sphere that articulates the needs for subjective containment and contextual stimuli.In this sense,questions arise about the indispensable attributes that spaces must possess fo...The domestic space can be defined as the sphere that articulates the needs for subjective containment and contextual stimuli.In this sense,questions arise about the indispensable attributes that spaces must possess for this articulation to take place adequately.Architecture,as the discipline in charge of satisfying the specific spatial needs of those who inhabit these spaces and,in a broader sense,as a concrete contribution to society,must address this relationship in all its complexity and generate concrete responses that incorporate the appropriate spatial attributes during the design processes.The design processes that shape living spaces confront this dialectic,and the manner in which they do so brings identity and character to them.It is believed that the higher the level of variables that are contemplated and weighted,the greater the adequacy of spaces to the changing dynamics of the people who inhabit them.This article focuses on a thorough analysis of these spatial attributes,in parallel to the definition of each one as a particular condition for design,based on their conceptualization,breakdown,and articulation.Conceptually,the following attributes are addressed:flexibility,adaptability,variability,versatility,multiplicity,plurality,integrality,gradualness,incrementality,progressiveness,independence,connectivity,intimacy,and privacy.Each of these attributes is valued as a contribution to creating adequate habitability in contextual terms,with consideration to possible integrations and combinations.展开更多
As e-commerce continues to mature,the advantages of live streaming within the industry have become increasingly apparent,offering significant growth opportunities.Social e-commerce platforms,which are user-centered,in...As e-commerce continues to mature,the advantages of live streaming within the industry have become increasingly apparent,offering significant growth opportunities.Social e-commerce platforms,which are user-centered,integrate social networks with e-commerce by leveraging social interactions to drive product sales and enhance the overall consumer shopping experience.This type of e-commerce fosters engagement and promotes products by merging online communities with shopping behavior,creating a more interactive and dynamic marketplace.It not only retains the traditional e-commerce trading and marketing functions but also adds a social dimension,making live stream anchors crucial figures connecting consumers with products.These anchors can attract consumers with their appearance and charm,and use their expertise on live streaming platforms to guide consumers by recommending live content.They can also interact with their audiences and potentially influence them to purchase the recommended goods.It is evident that the attributes of anchors in live streaming rooms significantly impact consumers’online behavior.Therefore,researching how platform contextual factors regulate consumers’online behavior is of great practical significance.This study employs multilevel regression analysis to support its hypotheses using data.The findings indicate that contextual factors of the platform significantly influence online behavior,enhancing the positive relationship between user attachment and online activities.展开更多
AVO (Amplitude variation with offset) technology is widely used in gas hydrate research. BSR (Bottom simulating reflector), caused by the huge difference in wave impedance between the hydrate reservoir and the underly...AVO (Amplitude variation with offset) technology is widely used in gas hydrate research. BSR (Bottom simulating reflector), caused by the huge difference in wave impedance between the hydrate reservoir and the underlying free gas reservoir, is the bottom boundary mark of the hydrate reservoir. Analyzing the AVO attributes of BSR can evaluate hydrate reservoirs. However, the Zoeppritz equation which is the theoretical basis of conventional AVO technology has inherent problems: the Zoeppritz equation does not consider the influence of thin layer thickness on reflection coefficients;the approximation of the Zoeppritz equation assumes that the difference of wave impedance between the two sides of the interface is small. These assumptions are not consistent with the occurrence characteristics of natural gas hydrate. The Brekhovskikh equation, which is more suitable for thin-layer reflection coefficient calculation, is used as the theoretical basis for AVO analysis. The reflection coefficients calculated by the Brekhovskikh equation are complex numbers with phase angles. Therefore, attributes of the reflection coefficient and its phase angle changing with offset are used to analyze the hydrate reservoir's porosity, saturation, and thickness. Finally, the random forest algorithm is used to predict the reservoir porosity, hydrate saturation, and thickness of the hydrate reservoir. In the synthetic data, the inversion results based on the four attributes of the Brekhovskikh equation are better than the conventional inversion results based on the two attributes of Zoeppritz, and the thickness can be accurately predicted. The proposed method also achieves good results in the application of Blake Ridge data. According to the method proposed in this paper, the hydrate reservoir in the area has a high porosity (more than 50%), and a medium saturation (between 10% and 20%). The thickness is mainly between 200m and 300m. It is consistent with the previous results obtained by velocity analysis.展开更多
The Tongnan secondary negative structure in central Sichuan Basin has controls and influences on the structural framework and petroleum geological conditions in the Gaoshiti-Moxi area.To clarify the controls and influ...The Tongnan secondary negative structure in central Sichuan Basin has controls and influences on the structural framework and petroleum geological conditions in the Gaoshiti-Moxi area.To clarify the controls and influences,the deformation characteristics,structural attributes and evolution process of the Tongnan negative structure were investigated through a series of qualitative and quantitative methods such as balanced profile restoration,area-depth-strain(ADS)analysis,and structural geometric forward numerical simulation,after comprehensive structural interpretation of high-precision 3D seismic data.The results are obtained in three aspects.First,above and below the P/AnP(Permian/pre-Permian)unconformity,the Tongnan negative structure demonstrates vertical differential structural deformation.It experiences two stages of structural stacking and reworking:extensional depression(from the Sinian Dengying Formation to the Permian),and compressional syncline deformation(after the Jurassic).The multi-phase trishear deformation of the preexisting deep normal faults dominated the extensional depression.The primary depression episodes occurred in the periods from the end of Late Proterozoic to the deposition of the 1st–2nd members of the Dengying Formation,and from the deposition of Lower Cambrian Longwangmiao Formation–Middle–Upper Cambrian until the Ordovician.Second,the multi-stage evolution process of the Tongnan negative structure controlled the oil and gas migration and adjustment and present-day differential gas and water distribution between the Tongnan negative structure and the Gaoshiti and Moxi-Longnüsi structural highs.Third,the Ordovician,which is limitedly distributed in the Tongnan negative structure and is truncated by the P/AnP unconformity on the top,has basic geological conditions for the formation of weathering karst carbonate reservoirs.It is a new petroleum target deserving attention.展开更多
There is a constant search for biomaterials from natural products like plants for food and industrial applications.The work embodied in this report aimed at investigating the effects of microwave-assisted and soxhlet ...There is a constant search for biomaterials from natural products like plants for food and industrial applications.The work embodied in this report aimed at investigating the effects of microwave-assisted and soxhlet extraction(MAE and SE) techniques on the functional physicochemical quality characteristics of Moringa oleifera seed oil and proteins extracts. M. oleifera seeds were ground to fine powders and oil was extracted by microwave-assisted and soxhlet extraction techniques using petroleum ether. Quality attributes including yield percent, moisture content,iodine, saponification, specific gravity, viscosity, p H, thiobarbituric acid, acid and peroxide values were measured. Mineral and vitamin contents, chemical/functional groups, fatty acid(FA) composition, and reducing power of the oil were evaluated. Metabolomics of protein extracted from the defatted powders were analyzed by nuclear magnetic resonance(NMR). M. oleifera oil from MAE and SE methods had good yield(34.25 ± 0.0%,28.75 ± 0.0%), low moisture content(0.008 ± 0.0%, 0.011 ± 0.0%), non-drying and unsaturated, moderately saponified, less dense(0.91 ± 0.01, 0.92 ± 0.02 g m L^(-1)), had Newtonian flow, were weakly acidic, showed good content of FAs, recorded strong potential for long shelf-life, showed stability against oxidative rancidity and enzymatic hydrolysis, had very rich deposits of micro-and macro-nutrients as well as water-soluble and lipidsoluble vitamins, and functional groups in the oil were reflective of its content of long-and medium-chain triglycerides(LCT and MCT). Monounsaturated and saturated fatty acids(MUFA and SFA) were detected and the oil has excellent ferric ion reducing power. NMR metabolomic assay revealed the presence of nine essential amino acids(EAAs) in the protein extract. MAE technique is a feasible and acceptable alternative for high throughput extraction of M. oleifera oil with high yield and excellent quality attributes. The study revealed that MAE did not impart any remarkable advantage(s) on the physicochemical properties of M. oleifera seed oil and protein compared to SE technique.展开更多
A growing stream of study stresses the relevance of subjective elements in understanding the hierarchy of preferences that underpin individual travel behavior. The purpose of this study is to evaluate the impact of va...A growing stream of study stresses the relevance of subjective elements in understanding the hierarchy of preferences that underpin individual travel behavior. The purpose of this study is to evaluate the impact of various factors on mode choice. To achieve this, a multinomial logit model (MNL) was used to analyze the relationships between mode choice and three classes of attributes;Combined Active and Latent, Active only and Latent only attributes. The data used are derived from surveys in the port city of Douala, Cameroon as a case study. Results stipulated that, the combined attributes model performed better than both active only attributes and latent only attributes models. Likewise, latent only attributes model performed better than active only attributes model. The advantage of modelling all three groups is for better selection of the most relevant attributes, and this is very relevant in understanding travel behavior of individuals and mode choice decisions.展开更多
Decision forest is a well-renowned machine learning technique to address the detection and prediction problems related to clinical data.But,the tra-ditional decision forest(DF)algorithms have lower classification accu...Decision forest is a well-renowned machine learning technique to address the detection and prediction problems related to clinical data.But,the tra-ditional decision forest(DF)algorithms have lower classification accuracy and cannot handle high-dimensional feature space effectively.In this work,we pro-pose a bootstrap decision forest using penalizing attributes(BFPA)algorithm to predict heart disease with higher accuracy.This work integrates a significance-based attribute selection(SAS)algorithm with the BFPA classifier to improve the performance of the diagnostic system in identifying cardiac illness.The pro-posed SAS algorithm is used to determine the correlation among attributes and to select the optimum subset of feature space for learning and testing processes.BFPA selects the optimal number of learning and testing data points as well as the density of trees in the forest to realize higher prediction accuracy in classifying imbalanced datasets effectively.The effectiveness of the developed classifier is cautiously verified on the real-world database(i.e.,Heart disease dataset from UCI repository)by relating its enactment with many advanced approaches with respect to the accuracy,sensitivity,specificity,precision,and intersection over-union(IoU).The empirical results demonstrate that the intended classification approach outdoes other approaches with superior enactment regarding the accu-racy,precision,sensitivity,specificity,and IoU of 94.7%,99.2%,90.1%,91.1%,and 90.4%,correspondingly.Additionally,we carry out Wilcoxon’s rank-sum test to determine whether our proposed classifier with feature selection method enables a noteworthy enhancement related to other classifiers or not.From the experimental results,we can conclude that the integration of SAS and BFPA outperforms other classifiers recently reported in the literature.展开更多
文摘Reservoir heterogeneities play a crucial role in governing reservoir performance and management.Traditionally,detailed and inter-well heterogeneity analyses are commonly performed by mapping seismic facies change in the seismic data,which is a time-intensive task.Many researchers have utilized a robust Grey-level co-occurrence matrix(GLCM)-based texture attributes to map reservoir heterogeneity.However,these attributes take seismic data as input and might not be sensitive to lateral lithology variation.To incorporate the lithology information,we have developed an innovative impedance-based texture approach using GLCM workflow by integrating 3D acoustic impedance volume(a rock propertybased attribute)obtained from a deep convolution network-based impedance inversion.Our proposed workflow is anticipated to be more sensitive toward mapping lateral changes than the conventional amplitude-based texture approach,wherein seismic data is used as input.To evaluate the improvement,we applied the proposed workflow to the full-stack 3D seismic data from the Poseidon field,NW-shelf,Australia.This study demonstrates that a better demarcation of reservoir gas sands with improved lateral continuity is achievable with the presented approach compared to the conventional approach.In addition,we assess the implication of multi-stage faulting on facies distribution for effective reservoir characterization.This study also suggests a well-bounded potential reservoir facies distribution along the parallel fault lines.Thus,the proposed approach provides an efficient strategy by integrating the impedance information with texture attributes to improve the inference on reservoir heterogeneity,which can serve as a promising tool for identifying potential reservoir zones for both production benefits and fluid storage.
文摘Canopy and branch architectures in high-density orchards can be crucial in production and fruit quality. The influence of two canopy orientations (Upright and Tilted) in combination with two arm (branch) architectures (Shortened or Overlapped) on tree growth, yield components, fruit quality, and leaf mineral nutrients in an “Aztec Fuji” apple (Malus domestica Bork.) high-density orchard was studied over five years. Tilted trees with shortened arm configuration (TilShArm) always had significantly larger trunk cross-sectional area (TCSA) than Upright trees with an Overlapped arm configuration (UpOverArm) every year from 2012 to 2016. Trees with a TilShArm system had more cumulative fruit per tree than those with an Upright orientation. Trees with a tilted canopy (TilShArm and TilOverArm) tended to have higher yield per tree and yield per hectare than those with an upright system. Trees with a TilShArm system were more precocious and had more yield per tree than those with an upright canopy orientation in 2012. When values were polled over five years, trees with an upright canopy-shortened arm system (UpShArm) treatment had a lower biennial bearing index (BBI) than those with an upright canopy-overlapped system (UpOverArm). Trees receiving an arm shortening (UpShArm or TilShArm) configuration often had larger fruits than those with overlapped arms (UpOverArm and TilOverArm). Fruit from trees receiving an UpOverArm had higher fruit firmness than those from trees with other canopy-branch arrangements at harvest due to their smaller size. Fruit from trees with a TilShArm and TilOverArm had significantly higher water core and bitter pit but lower sunburn than trees with an upright canopy (UpShArm and UpOverArm). Leaves from trees with an UpOverArm canopy-branch configuration had the lowest leaf Ca but the highest leaf K and Fe concentrations among all treatments.
基金the financially supported by the National Natural Science Foundation of China(Grant No.52104013)the China Postdoctoral Science Foundation(Grant No.2022T150724)。
文摘Due to the complexity and variability of carbonate formation leakage zones, lost circulation prediction and control is one of the major challenges of carbonate drilling. It raises well-control risks and production expenses. This research utilizes the H oilfield as an example, employs seismic features to analyze mud loss prediction, and produces a complete set of pre-drilling mud loss prediction solutions. Firstly, 16seismic attributes are calculated based on the post-stack seismic data, and the mud loss rate per unit footage is specified. The sample set is constructed by extracting each attribute from the seismic trace surrounding 15 typical wells, with a ratio of 8:2 between the training set and the test set. With the calibration results for mud loss rate per unit footage, the nonlinear mapping relationship between seismic attributes and mud loss rate per unit size is established using the mixed density network model.Then, the influence of the number of sub-Gausses and the uncertainty coefficient on the model's prediction is evaluated. Finally, the model is used in conjunction with downhole drilling conditions to assess the risk of mud loss in various layers and along the wellbore trajectory. The study demonstrates that the mean relative errors of the model for training data and test data are 6.9% and 7.5%, respectively, and that R2is 90% and 88%, respectively, for training data and test data. The accuracy and efficacy of mud loss prediction may be greatly enhanced by combining 16 seismic attributes with the mud loss rate per unit footage and applying machine learning methods. The mud loss prediction model based on the MDN model can not only predict the mud loss rate but also objectively evaluate the prediction based on the quality of the data and the model.
基金supported by the Guangxi Key R&D Program (project No. AB16380254)a research project of Guangxi Forestry Department (Guilinkezi [2015] No.5)supported a grant for Bagui Senior Fellow (C33600992001)。
文摘Forests,the largest terrestrial carbon sinks,play an important role in carbon sequestration and climate change mitigation.Although forest attributes and environmental factors have been shown to impact aboveground biomass,their influence on biomass stocks in species-rich forests in southern China,a biodiversity hotspot,has rarely been investigated.In this study,we characterized the effects of environmental factors,forest structure,and species diversity on aboveground biomass stocks of 30 plots(1 ha each) in natural forests located within seven nature reserves distributed across subtropical and marginal tropical zones in Guangxi,China.Our results indicate that forest aboveground biomass stocks in this region are lower than those in mature tropical and subtropical forests in other regions.Furthermore,we found that aboveground biomass was positively correlated with stand age,mean annual precipitation,elevation,structural attributes and species richness,although not with species evenness.When we compared stands with the same basal area,we found that aboveground biomass stock was higher in communities with a higher coefficient of variation of diameter at breast height.These findings highlight the importance of maintaining forest structural diversity and species richness to promote aboveground biomass accumulation and reveal the potential impacts of precipitation changes resulting from climate warming on the ecosystem services of subtropical and northern tropical forests in China.Notably,many natural forests in southern China are not fully stocked.Therefore,their continued growth will increase their carbon storage over time.
基金key technology project for the prevention and control of major workplace safety accidents in 2017 from the State Administration of Work Safety of China-the research on the identification and assessment technology and control system of major risks of enterprises for the prevention and control of severe accidents(Hubei-0002-2017AQ)supported by the Department of Emergency Management of Hubei Province,Wuhan 430064,China.
文摘The technological revolution has spawned a new generation of industrial systems,but it has also put forward higher requirements for safety management accuracy,timeliness,and systematicness.Risk assessment needs to evolve to address the existing and future challenges by considering the new demands and advancements in safety management.The study aims to propose a systematic and comprehensive risk assessment method to meet the needs of process system safety management.The methodology first incorporates possibility,severity,and dynamicity(PSD)to structure the“51X”evaluation indicator system,including the inherent,management,and disturbance risk factors.Subsequently,the four-tier(risk point-unit-enterprise-region)risk assessment(RA)mathematical model has been established to consider supervision needs.And in conclusion,the application of the PSD-RA method in ammonia refrigeration workshop cases and safety risk monitoring systems is presented to illustrate the feasibility and effectiveness of the proposed PSD-RA method in safety management.The findings show that the PSD-RA method can be well integrated with the needs of safety work informatization,which is also helpful for implementing the enterprise's safety work responsibility and the government's safety supervision responsibility.
文摘This resolution 5 (25−1 factorial) study aimed to ascertain an understanding of the interactions between different geometries on the resulting Radar Cross Section (RCS) of a target. The results of the study are in line with the general understanding of the impact different geometries have on RCS but show that geometries can also influence the variance of measured RCS, and typical attributes that reduce RCS increase the variance of the measured RCS. Notably, an increased angle between the front face of a plate and the direction of the radar signal decreased RCS but increased the variance of the RCS measured.
文摘The domestic space can be defined as the sphere that articulates the needs for subjective containment and contextual stimuli.In this sense,questions arise about the indispensable attributes that spaces must possess for this articulation to take place adequately.Architecture,as the discipline in charge of satisfying the specific spatial needs of those who inhabit these spaces and,in a broader sense,as a concrete contribution to society,must address this relationship in all its complexity and generate concrete responses that incorporate the appropriate spatial attributes during the design processes.The design processes that shape living spaces confront this dialectic,and the manner in which they do so brings identity and character to them.It is believed that the higher the level of variables that are contemplated and weighted,the greater the adequacy of spaces to the changing dynamics of the people who inhabit them.This article focuses on a thorough analysis of these spatial attributes,in parallel to the definition of each one as a particular condition for design,based on their conceptualization,breakdown,and articulation.Conceptually,the following attributes are addressed:flexibility,adaptability,variability,versatility,multiplicity,plurality,integrality,gradualness,incrementality,progressiveness,independence,connectivity,intimacy,and privacy.Each of these attributes is valued as a contribution to creating adequate habitability in contextual terms,with consideration to possible integrations and combinations.
文摘As e-commerce continues to mature,the advantages of live streaming within the industry have become increasingly apparent,offering significant growth opportunities.Social e-commerce platforms,which are user-centered,integrate social networks with e-commerce by leveraging social interactions to drive product sales and enhance the overall consumer shopping experience.This type of e-commerce fosters engagement and promotes products by merging online communities with shopping behavior,creating a more interactive and dynamic marketplace.It not only retains the traditional e-commerce trading and marketing functions but also adds a social dimension,making live stream anchors crucial figures connecting consumers with products.These anchors can attract consumers with their appearance and charm,and use their expertise on live streaming platforms to guide consumers by recommending live content.They can also interact with their audiences and potentially influence them to purchase the recommended goods.It is evident that the attributes of anchors in live streaming rooms significantly impact consumers’online behavior.Therefore,researching how platform contextual factors regulate consumers’online behavior is of great practical significance.This study employs multilevel regression analysis to support its hypotheses using data.The findings indicate that contextual factors of the platform significantly influence online behavior,enhancing the positive relationship between user attachment and online activities.
基金The research is funded by the National Natural Science Foundation of China(No.12171455)the Original Innovation Research Program of the Chinese Academy of Sciences(CAS)under grant number ZDBS-LY-DQC003the Key Research Programs IGGCAS-2019031.
文摘AVO (Amplitude variation with offset) technology is widely used in gas hydrate research. BSR (Bottom simulating reflector), caused by the huge difference in wave impedance between the hydrate reservoir and the underlying free gas reservoir, is the bottom boundary mark of the hydrate reservoir. Analyzing the AVO attributes of BSR can evaluate hydrate reservoirs. However, the Zoeppritz equation which is the theoretical basis of conventional AVO technology has inherent problems: the Zoeppritz equation does not consider the influence of thin layer thickness on reflection coefficients;the approximation of the Zoeppritz equation assumes that the difference of wave impedance between the two sides of the interface is small. These assumptions are not consistent with the occurrence characteristics of natural gas hydrate. The Brekhovskikh equation, which is more suitable for thin-layer reflection coefficient calculation, is used as the theoretical basis for AVO analysis. The reflection coefficients calculated by the Brekhovskikh equation are complex numbers with phase angles. Therefore, attributes of the reflection coefficient and its phase angle changing with offset are used to analyze the hydrate reservoir's porosity, saturation, and thickness. Finally, the random forest algorithm is used to predict the reservoir porosity, hydrate saturation, and thickness of the hydrate reservoir. In the synthetic data, the inversion results based on the four attributes of the Brekhovskikh equation are better than the conventional inversion results based on the two attributes of Zoeppritz, and the thickness can be accurately predicted. The proposed method also achieves good results in the application of Blake Ridge data. According to the method proposed in this paper, the hydrate reservoir in the area has a high porosity (more than 50%), and a medium saturation (between 10% and 20%). The thickness is mainly between 200m and 300m. It is consistent with the previous results obtained by velocity analysis.
基金Supported by the National Natural Science Foundation of China(U19B6003-01).
文摘The Tongnan secondary negative structure in central Sichuan Basin has controls and influences on the structural framework and petroleum geological conditions in the Gaoshiti-Moxi area.To clarify the controls and influences,the deformation characteristics,structural attributes and evolution process of the Tongnan negative structure were investigated through a series of qualitative and quantitative methods such as balanced profile restoration,area-depth-strain(ADS)analysis,and structural geometric forward numerical simulation,after comprehensive structural interpretation of high-precision 3D seismic data.The results are obtained in three aspects.First,above and below the P/AnP(Permian/pre-Permian)unconformity,the Tongnan negative structure demonstrates vertical differential structural deformation.It experiences two stages of structural stacking and reworking:extensional depression(from the Sinian Dengying Formation to the Permian),and compressional syncline deformation(after the Jurassic).The multi-phase trishear deformation of the preexisting deep normal faults dominated the extensional depression.The primary depression episodes occurred in the periods from the end of Late Proterozoic to the deposition of the 1st–2nd members of the Dengying Formation,and from the deposition of Lower Cambrian Longwangmiao Formation–Middle–Upper Cambrian until the Ordovician.Second,the multi-stage evolution process of the Tongnan negative structure controlled the oil and gas migration and adjustment and present-day differential gas and water distribution between the Tongnan negative structure and the Gaoshiti and Moxi-Longnüsi structural highs.Third,the Ordovician,which is limitedly distributed in the Tongnan negative structure and is truncated by the P/AnP unconformity on the top,has basic geological conditions for the formation of weathering karst carbonate reservoirs.It is a new petroleum target deserving attention.
基金funded by International Foundation for Science(IFS)and Organisation for the Prohibition of Chemical Weapons(OPCW)research grant awarded to Dr.Chukwuebuka Emmanuel Umeyor in 2019(Grant number:I-2-F-6448-1).
文摘There is a constant search for biomaterials from natural products like plants for food and industrial applications.The work embodied in this report aimed at investigating the effects of microwave-assisted and soxhlet extraction(MAE and SE) techniques on the functional physicochemical quality characteristics of Moringa oleifera seed oil and proteins extracts. M. oleifera seeds were ground to fine powders and oil was extracted by microwave-assisted and soxhlet extraction techniques using petroleum ether. Quality attributes including yield percent, moisture content,iodine, saponification, specific gravity, viscosity, p H, thiobarbituric acid, acid and peroxide values were measured. Mineral and vitamin contents, chemical/functional groups, fatty acid(FA) composition, and reducing power of the oil were evaluated. Metabolomics of protein extracted from the defatted powders were analyzed by nuclear magnetic resonance(NMR). M. oleifera oil from MAE and SE methods had good yield(34.25 ± 0.0%,28.75 ± 0.0%), low moisture content(0.008 ± 0.0%, 0.011 ± 0.0%), non-drying and unsaturated, moderately saponified, less dense(0.91 ± 0.01, 0.92 ± 0.02 g m L^(-1)), had Newtonian flow, were weakly acidic, showed good content of FAs, recorded strong potential for long shelf-life, showed stability against oxidative rancidity and enzymatic hydrolysis, had very rich deposits of micro-and macro-nutrients as well as water-soluble and lipidsoluble vitamins, and functional groups in the oil were reflective of its content of long-and medium-chain triglycerides(LCT and MCT). Monounsaturated and saturated fatty acids(MUFA and SFA) were detected and the oil has excellent ferric ion reducing power. NMR metabolomic assay revealed the presence of nine essential amino acids(EAAs) in the protein extract. MAE technique is a feasible and acceptable alternative for high throughput extraction of M. oleifera oil with high yield and excellent quality attributes. The study revealed that MAE did not impart any remarkable advantage(s) on the physicochemical properties of M. oleifera seed oil and protein compared to SE technique.
文摘A growing stream of study stresses the relevance of subjective elements in understanding the hierarchy of preferences that underpin individual travel behavior. The purpose of this study is to evaluate the impact of various factors on mode choice. To achieve this, a multinomial logit model (MNL) was used to analyze the relationships between mode choice and three classes of attributes;Combined Active and Latent, Active only and Latent only attributes. The data used are derived from surveys in the port city of Douala, Cameroon as a case study. Results stipulated that, the combined attributes model performed better than both active only attributes and latent only attributes models. Likewise, latent only attributes model performed better than active only attributes model. The advantage of modelling all three groups is for better selection of the most relevant attributes, and this is very relevant in understanding travel behavior of individuals and mode choice decisions.
文摘Decision forest is a well-renowned machine learning technique to address the detection and prediction problems related to clinical data.But,the tra-ditional decision forest(DF)algorithms have lower classification accuracy and cannot handle high-dimensional feature space effectively.In this work,we pro-pose a bootstrap decision forest using penalizing attributes(BFPA)algorithm to predict heart disease with higher accuracy.This work integrates a significance-based attribute selection(SAS)algorithm with the BFPA classifier to improve the performance of the diagnostic system in identifying cardiac illness.The pro-posed SAS algorithm is used to determine the correlation among attributes and to select the optimum subset of feature space for learning and testing processes.BFPA selects the optimal number of learning and testing data points as well as the density of trees in the forest to realize higher prediction accuracy in classifying imbalanced datasets effectively.The effectiveness of the developed classifier is cautiously verified on the real-world database(i.e.,Heart disease dataset from UCI repository)by relating its enactment with many advanced approaches with respect to the accuracy,sensitivity,specificity,precision,and intersection over-union(IoU).The empirical results demonstrate that the intended classification approach outdoes other approaches with superior enactment regarding the accu-racy,precision,sensitivity,specificity,and IoU of 94.7%,99.2%,90.1%,91.1%,and 90.4%,correspondingly.Additionally,we carry out Wilcoxon’s rank-sum test to determine whether our proposed classifier with feature selection method enables a noteworthy enhancement related to other classifiers or not.From the experimental results,we can conclude that the integration of SAS and BFPA outperforms other classifiers recently reported in the literature.