The recognition and retrieval of identical videos by combing through entire video files requires a great deal of time and memory space. Therefore, most current video-matching methods analyze only a part of each video&...The recognition and retrieval of identical videos by combing through entire video files requires a great deal of time and memory space. Therefore, most current video-matching methods analyze only a part of each video's image frame information. All these methods, however, share the critical problem of erroneously categorizing identical videos as different if they have merely been altered in resolution or converted with a different codec. This paper deals instead with an identical-video-retrieval method using the low-peak feature of audio data. The low-peak feature remains relatively stable even with changes in bit-rate or codec. The proposed method showed a search success rate of 93.7% in a video matching experiment. This approach could provide a technique for recognizing identical content on video file share sites.展开更多
文摘The recognition and retrieval of identical videos by combing through entire video files requires a great deal of time and memory space. Therefore, most current video-matching methods analyze only a part of each video's image frame information. All these methods, however, share the critical problem of erroneously categorizing identical videos as different if they have merely been altered in resolution or converted with a different codec. This paper deals instead with an identical-video-retrieval method using the low-peak feature of audio data. The low-peak feature remains relatively stable even with changes in bit-rate or codec. The proposed method showed a search success rate of 93.7% in a video matching experiment. This approach could provide a technique for recognizing identical content on video file share sites.