期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
3D Step-by-step inversion strategy for audio magnetotellurics data based on unstructured mesh 被引量:1
1
作者 Cheng San Zhang Zhi-Yong +5 位作者 Zhou Feng Li Man Chen Hui Shi Fu-Sheng Huang Lin-Pin Li Yong 《Applied Geophysics》 SCIE CSCD 2021年第3期375-385,433,共12页
A three-dimensional(3D)step-by-step inversion strategy for audio magnetotellurics(AMT)is investigated in this study.The objective function is minimized by iteratively solving the Gauss-Newton normal equation,and the i... A three-dimensional(3D)step-by-step inversion strategy for audio magnetotellurics(AMT)is investigated in this study.The objective function is minimized by iteratively solving the Gauss-Newton normal equation,and the inversion region is discretized with unstructured tetrahedral elements.The inversion proceeds step-by-step from a coarse mesh to a fine mesh.In the inversion iteration process,a mesh is adaptively optimized according to the spatial gradient information about the model resistivity to fine delineate the boundaries of abnormal bodies.In the early stage of inversion execution,a coarse mesh is used for inversion,and the inversion stability is improved by reducing the number of inversion elements.In addition,mesh refinement is performed in the iterative inversion process.The inversion results obtained from the previous mesh are used as the reference and initial models for the next mesh iterative inversion.The step-by-step inversion strategy can ensure that the inversion is performed in the correct direction,improving the inversion stability and results gradually.Synthetic results show that the step-by-step inversion strategy with a Gauss-Newton method for 3D AMT inversion is stable and reliable,which lays a foundation for further practical 3D AMT data inversion. 展开更多
关键词 audio magnetotellurics 3D inversion step-by-step inversion Gauss-Newton unstructured gird
下载PDF
Application of integrated geophysical techniques in geothermal exploration in Binhai County, Jiangsu Province
2
作者 Juncheng Wang Shiyin Gao +3 位作者 Jianguo Wang Lin Li Xiaoyan Gong Jinbao Su 《Deep Underground Science and Engineering》 2024年第3期338-348,共11页
Integrated geophysical technology is a necessary and effective means for geothermal exploration.However,integration of geophysical technology for large‐scale surveys with those for geothermal reservoir localization i... Integrated geophysical technology is a necessary and effective means for geothermal exploration.However,integration of geophysical technology for large‐scale surveys with those for geothermal reservoir localization is still in development.This study used the controlled source audio‐frequency magnetotelluric method technology for large‐scale exploration to obtain underground electrical structure information and micromotion detection technology to obtain underground wave velocity structure information.The combination of two detection technologies was used for local identification of geothermal reservoirs.Further,auxiliary correction and inversion constraint were implemented through the audio magnetotelluric sounding technology for maximum authenticity restoration of the near‐and transition‐field data.Through these technology improvements,a geothermal geological model was established for the Binhai County of Jiangsu Province in China and potential geothermal well locations were identified.On this basis,a geothermal well was drilled nearly 3000m deep,with a daily water volume of over 2000m3/day and a geothermal water temperature of 51°C at the well head.It is found that predictions using the above integrated geophysical exploration technology are in good agreement with the well geological formation data.This integrated geophysical technology can be effectively applied for geothermal exploration with high precision and reliability. 展开更多
关键词 controlled source audio frequency magnetotelluric method(CSAMT) geothermal exploration integrated geophysical technology micromotion detection technology
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部