Objective:To explore and visualize the connectivity of suspected Ebola cases and surveillance callers who used cellphone technology in Moyamba District in Sierra Leone for Ebola surveillance,and to examine the demogra...Objective:To explore and visualize the connectivity of suspected Ebola cases and surveillance callers who used cellphone technology in Moyamba District in Sierra Leone for Ebola surveillance,and to examine the demographic differences and characteristics of Ebola surveillance callers who make more calls as well as those callers who are more likely to make at least one positive Ebola call.Methods:Surveillance data for 393 suspected Ebola cases(192 males,201 females) were collected from October 23,2014 to June 28,2015 using cellphone technology.UCINET and Net Draw software were used to explore and visualize the social connectivity between callers and suspected Ebola cases.Poisson and logistic regression analyses were used to do multivariable analysis.Results:The entire social network was comprised of 393 ties and 745 nodes.Women(AOR=0.33,95% CI [0.14,0.81]) were associated with decreased odds of making at least one positive Ebola surveillance call compared to men.Women(IR= 0.63,95% CI [0.49,0.82]) were also associated with making fewer Ebola surveillance calls compared to men.Conclusion:Social network visualization can analyze syndromic surveillance data for Ebola collected by cellphone technology with unique insights.展开更多
This paper presents our vision of large-scale, dynamic social network analysis in real environments, which we expect to be enabled by the introduction of large-scale heterogeneous sensors in the ambient environment. W...This paper presents our vision of large-scale, dynamic social network analysis in real environments, which we expect to be enabled by the introduction of large-scale heterogeneous sensors in the ambient environment. We address challenges in realizing large-scale dynamic social network analysis in real environments, and discuss several promising applications. Moreover, we present our design and implementation of a prototype system for quasi-realtime social network construction. We finally present preliminary experimental results of dynamic social network analysis for six-person social gatherings in a real environment, and discuss the feasibility of dynamic social network analysis and its effectiveness.展开更多
To discover and identify the influential nodes in any complex network has been an important issue.It is a significant factor in order to control over the network.Through control on a network,any information can be spr...To discover and identify the influential nodes in any complex network has been an important issue.It is a significant factor in order to control over the network.Through control on a network,any information can be spread and stopped in a short span of time.Both targets can be achieved,since network of information can be extended and as well destroyed.So,information spread and community formation have become one of the most crucial issues in the world of SNA(Social Network Analysis).In this work,the complex network of twitter social network has been formalized and results are analyzed.For this purpose,different network metrics have been utilized.Visualization of the network is provided in its original form and then filter out(different percentages)from the network to eliminate the less impacting nodes and edges for better analysis.This network is analyzed according to different centrality measures,like edge-betweenness,betweenness centrality,closeness centrality and eigenvector centrality.Influential nodes are detected and their impact is observed on the network.The communities are analyzed in terms of network coverage considering theMinimum Spanning Tree,shortest path distribution and network diameter.It is found that these are the very effective ways to find influential and central nodes from such big social networks like Facebook,Instagram,Twitter,LinkedIn,etc.展开更多
This research uses random networks as benchmarks for inferential tests of network structures. Specifically, we develop formulas for expected values and confidence intervals for four frequently employed social network ...This research uses random networks as benchmarks for inferential tests of network structures. Specifically, we develop formulas for expected values and confidence intervals for four frequently employed social network centrality indices. The first study begins with analyses of stylized networks, which are then perturbed with increasing levels of random noise. When the indices achieve their values for fully random networks, the indices reveal systematic relationships that generalize across network forms. The second study then delves into the relationships between numbers of actors in a network and the density of a network for each of the centrality indices. In doing so, expected values are easily calculated, which in turn enable chi-square tests of network structure. Furthermore, confidence intervals are developed to facilitate a network analyst’s understanding as to which patterns in the data are merely random, versus which are structurally significantly distinct.展开更多
The concept of social stratification and hierarchy among human dates is back to the origin of human race. Presently, the growing reputation of social networks has given us with an opportunity to analyze these well-stu...The concept of social stratification and hierarchy among human dates is back to the origin of human race. Presently, the growing reputation of social networks has given us with an opportunity to analyze these well-studied phenomena over different networks at different scales. Generally, a social network could be defined as a collection of actors and their interactions. In this work, we concern ourselves with a particular type of social networks, known as trust networks. In this type of networks, there is an explicit show of trust (positive interaction) or distrust (negative interaction) among the actors. In a social network, actors tend to connect with each other on the basis of their perceived social hierarchy. The emergence of such a hierarchy within a social community shows the manner in which authority manifests in the community. In the case of signed networks, the concept of social hierarchy can be interpreted as the emergence of a tree-like structure comprising of actors in a top-down fashion in the order of their ranks, describing a specific parent-child relationship, viz. child trusts parent. However, owing to the presence of positive as well as negative interactions in signed networks, deriving such “trust hierarchies” is a non-trivial challenge. We argue that traditional notions (of unsigned networks) are insufficient to derive hierarchies that are latent within signed networks.展开更多
以Web of Science数据库收录的社会计算领域的文献为数据源,利用Ucinet和Pajek构建了社会计算领域作者合作网络,结合复杂网络理论和社会网络分析法,对该领域作者合作的整体网络进行了较为详细的分析,并得到4种合作模式双核模式、桥梁模...以Web of Science数据库收录的社会计算领域的文献为数据源,利用Ucinet和Pajek构建了社会计算领域作者合作网络,结合复杂网络理论和社会网络分析法,对该领域作者合作的整体网络进行了较为详细的分析,并得到4种合作模式双核模式、桥梁模式、完备模式及持续发展模式。最后,还深入分析了3个典型的持续发展合作网络的演化过程以及其研究主题。展开更多
文摘Objective:To explore and visualize the connectivity of suspected Ebola cases and surveillance callers who used cellphone technology in Moyamba District in Sierra Leone for Ebola surveillance,and to examine the demographic differences and characteristics of Ebola surveillance callers who make more calls as well as those callers who are more likely to make at least one positive Ebola call.Methods:Surveillance data for 393 suspected Ebola cases(192 males,201 females) were collected from October 23,2014 to June 28,2015 using cellphone technology.UCINET and Net Draw software were used to explore and visualize the social connectivity between callers and suspected Ebola cases.Poisson and logistic regression analyses were used to do multivariable analysis.Results:The entire social network was comprised of 393 ties and 745 nodes.Women(AOR=0.33,95% CI [0.14,0.81]) were associated with decreased odds of making at least one positive Ebola surveillance call compared to men.Women(IR= 0.63,95% CI [0.49,0.82]) were also associated with making fewer Ebola surveillance calls compared to men.Conclusion:Social network visualization can analyze syndromic surveillance data for Ebola collected by cellphone technology with unique insights.
文摘This paper presents our vision of large-scale, dynamic social network analysis in real environments, which we expect to be enabled by the introduction of large-scale heterogeneous sensors in the ambient environment. We address challenges in realizing large-scale dynamic social network analysis in real environments, and discuss several promising applications. Moreover, we present our design and implementation of a prototype system for quasi-realtime social network construction. We finally present preliminary experimental results of dynamic social network analysis for six-person social gatherings in a real environment, and discuss the feasibility of dynamic social network analysis and its effectiveness.
文摘To discover and identify the influential nodes in any complex network has been an important issue.It is a significant factor in order to control over the network.Through control on a network,any information can be spread and stopped in a short span of time.Both targets can be achieved,since network of information can be extended and as well destroyed.So,information spread and community formation have become one of the most crucial issues in the world of SNA(Social Network Analysis).In this work,the complex network of twitter social network has been formalized and results are analyzed.For this purpose,different network metrics have been utilized.Visualization of the network is provided in its original form and then filter out(different percentages)from the network to eliminate the less impacting nodes and edges for better analysis.This network is analyzed according to different centrality measures,like edge-betweenness,betweenness centrality,closeness centrality and eigenvector centrality.Influential nodes are detected and their impact is observed on the network.The communities are analyzed in terms of network coverage considering theMinimum Spanning Tree,shortest path distribution and network diameter.It is found that these are the very effective ways to find influential and central nodes from such big social networks like Facebook,Instagram,Twitter,LinkedIn,etc.
文摘This research uses random networks as benchmarks for inferential tests of network structures. Specifically, we develop formulas for expected values and confidence intervals for four frequently employed social network centrality indices. The first study begins with analyses of stylized networks, which are then perturbed with increasing levels of random noise. When the indices achieve their values for fully random networks, the indices reveal systematic relationships that generalize across network forms. The second study then delves into the relationships between numbers of actors in a network and the density of a network for each of the centrality indices. In doing so, expected values are easily calculated, which in turn enable chi-square tests of network structure. Furthermore, confidence intervals are developed to facilitate a network analyst’s understanding as to which patterns in the data are merely random, versus which are structurally significantly distinct.
文摘The concept of social stratification and hierarchy among human dates is back to the origin of human race. Presently, the growing reputation of social networks has given us with an opportunity to analyze these well-studied phenomena over different networks at different scales. Generally, a social network could be defined as a collection of actors and their interactions. In this work, we concern ourselves with a particular type of social networks, known as trust networks. In this type of networks, there is an explicit show of trust (positive interaction) or distrust (negative interaction) among the actors. In a social network, actors tend to connect with each other on the basis of their perceived social hierarchy. The emergence of such a hierarchy within a social community shows the manner in which authority manifests in the community. In the case of signed networks, the concept of social hierarchy can be interpreted as the emergence of a tree-like structure comprising of actors in a top-down fashion in the order of their ranks, describing a specific parent-child relationship, viz. child trusts parent. However, owing to the presence of positive as well as negative interactions in signed networks, deriving such “trust hierarchies” is a non-trivial challenge. We argue that traditional notions (of unsigned networks) are insufficient to derive hierarchies that are latent within signed networks.
文摘以Web of Science数据库收录的社会计算领域的文献为数据源,利用Ucinet和Pajek构建了社会计算领域作者合作网络,结合复杂网络理论和社会网络分析法,对该领域作者合作的整体网络进行了较为详细的分析,并得到4种合作模式双核模式、桥梁模式、完备模式及持续发展模式。最后,还深入分析了3个典型的持续发展合作网络的演化过程以及其研究主题。