We propose and demonstrate to derive the Auger recombination coefficient by fitting efficiency-current and carrier lifetime-current curves simultaneously, which can minimize the uncertainty of fitting results. The obt...We propose and demonstrate to derive the Auger recombination coefficient by fitting efficiency-current and carrier lifetime-current curves simultaneously, which can minimize the uncertainty of fitting results. The obtained Auger recombination coefficient is 1.0x10(-31) cm(6)s(-1) in the present sample, which contributes slightly to efficiency droop effect.展开更多
The dynamics of produced excited carriers under the irradiation of Ge crystal is investigated theoretically by using femtosecond laser pulse.A two-temperature model combined with the Drude model is also used to study ...The dynamics of produced excited carriers under the irradiation of Ge crystal is investigated theoretically by using femtosecond laser pulse.A two-temperature model combined with the Drude model is also used to study the nonequilibrium carrier density,carrier and lattice temperatures,and optical properties of the crystal.The properties of the surface plasmon wave when excited are also studied.The influences of non-radiation and radiative recombination process on the photoexcitation of the semiconductor during pulse and the relaxation after the pulse are described in detail.The results show that the effects of Auger recombination on the nonequilibrium carrier density and optical properties of the crystal and the properties of the surface plasmon polariton are great,whereas the effect of radiative recombination is extremely small.展开更多
Light-harvesters with long-lived excited states are desired for efficient solar energy conversion systems. Many solar-to-fuel conversion reactions, such as H2 evolution and CO2 reduction, require multiple sequential e...Light-harvesters with long-lived excited states are desired for efficient solar energy conversion systems. Many solar-to-fuel conversion reactions, such as H2 evolution and CO2 reduction, require multiple sequential electron transfer processes, which leads to a complicated situation that excited states involves not only excitons (electron-hole pairs) but also multi-excitons and charged excitons. While long-lived excitons can be obtained in various systems (e.g., semiconductor nanocrystals), multi-excitons and charged excitons are typically shorted-lived due to nonradiative Auger recombination pathways whereby the recombination energy of an exciton is quickly transferred to the third carrier on a few to hundreds of picoseconds timescale. In this work, we report a study of excitons, trions (an exciton plus an additional charge), and biexcitons in CdSe/CdTe colloidal quantum wells or nanoplatelets. The type- II band alignment effectively separates electrons and holes in space, leading to a single exciton lifetime of 340 ns which is -2 order of magnitudes longer than that in plane CdSe nanoplatelets. More importantly, the electron-hole separation also dramatically slows down Auger decay, giving rise to a trion lifetime of 70 ns and a biexciton lifetime of 11 ns, among the longest values ever reported for colloidal nanocrystals. The long-lived exciton, trion, and biexciton states, combined with the intrinsically strong light-absorption capability of two-dimensional systems, enable the CdSe/CdTe type-II nanoplatelets as promising light harvesters for efficient solar-to-fuel conversion reactions.展开更多
基金Supported by the National Key Research and Development Program of China under Grant No 2016YFB0400102the National Basic Research Program of China under Grant Nos 2012CB3155605,2013CB632804,2014CB340002 and 2015CB351900+6 种基金the National Natural Science Foundation of China under Grant Nos 61574082,61210014,61321004,61307024,and 51561165012the High-Technology Research and Development Program of China under Grant No 2015AA017101the Tsinghua University Initiative Scientific Research Program under Grant Nos 2013023Z09N and 2015THZ02-3the Open Fund of the State Key Laboratory on Integrated Optoelectronics under Grant No IOSKL2015KF10the CAEP Microsystem and THz Science and Technology Foundation under Grant No CAEPMT201505the Science Challenge Project under Grant No JCKY2016212A503the Guangdong Province Science and Technology Program under Grant No 2014B010121004
文摘We propose and demonstrate to derive the Auger recombination coefficient by fitting efficiency-current and carrier lifetime-current curves simultaneously, which can minimize the uncertainty of fitting results. The obtained Auger recombination coefficient is 1.0x10(-31) cm(6)s(-1) in the present sample, which contributes slightly to efficiency droop effect.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11804227).
文摘The dynamics of produced excited carriers under the irradiation of Ge crystal is investigated theoretically by using femtosecond laser pulse.A two-temperature model combined with the Drude model is also used to study the nonequilibrium carrier density,carrier and lattice temperatures,and optical properties of the crystal.The properties of the surface plasmon wave when excited are also studied.The influences of non-radiation and radiative recombination process on the photoexcitation of the semiconductor during pulse and the relaxation after the pulse are described in detail.The results show that the effects of Auger recombination on the nonequilibrium carrier density and optical properties of the crystal and the properties of the surface plasmon polariton are great,whereas the effect of radiative recombination is extremely small.
文摘Light-harvesters with long-lived excited states are desired for efficient solar energy conversion systems. Many solar-to-fuel conversion reactions, such as H2 evolution and CO2 reduction, require multiple sequential electron transfer processes, which leads to a complicated situation that excited states involves not only excitons (electron-hole pairs) but also multi-excitons and charged excitons. While long-lived excitons can be obtained in various systems (e.g., semiconductor nanocrystals), multi-excitons and charged excitons are typically shorted-lived due to nonradiative Auger recombination pathways whereby the recombination energy of an exciton is quickly transferred to the third carrier on a few to hundreds of picoseconds timescale. In this work, we report a study of excitons, trions (an exciton plus an additional charge), and biexcitons in CdSe/CdTe colloidal quantum wells or nanoplatelets. The type- II band alignment effectively separates electrons and holes in space, leading to a single exciton lifetime of 340 ns which is -2 order of magnitudes longer than that in plane CdSe nanoplatelets. More importantly, the electron-hole separation also dramatically slows down Auger decay, giving rise to a trion lifetime of 70 ns and a biexciton lifetime of 11 ns, among the longest values ever reported for colloidal nanocrystals. The long-lived exciton, trion, and biexciton states, combined with the intrinsically strong light-absorption capability of two-dimensional systems, enable the CdSe/CdTe type-II nanoplatelets as promising light harvesters for efficient solar-to-fuel conversion reactions.