期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Efficiency-Driven Custom Chatbot Development: Unleashing LangChain, RAG, and Performance-Optimized LLM Fusion
1
作者 S.Vidivelli Manikandan Ramachandran A.Dharunbalaji 《Computers, Materials & Continua》 SCIE EI 2024年第8期2423-2442,共20页
This exploration acquaints a momentous methodology with custom chatbot improvement that focuses on pro-ficiency close by viability.We accomplish this by joining three key innovations:LangChain,Retrieval Augmented Gene... This exploration acquaints a momentous methodology with custom chatbot improvement that focuses on pro-ficiency close by viability.We accomplish this by joining three key innovations:LangChain,Retrieval Augmented Generation(RAG),and enormous language models(LLMs)tweaked with execution proficient strategies like LoRA and QLoRA.LangChain takes into consideration fastidious fitting of chatbots to explicit purposes,guaranteeing engaged and important collaborations with clients.RAG’s web scratching capacities engage these chatbots to get to a tremendous store of data,empowering them to give exhaustive and enlightening reactions to requests.This recovered data is then decisively woven into reaction age utilizing LLMs that have been calibrated with an emphasis on execution productivity.This combination approach offers a triple advantage:further developed viability,upgraded client experience,and extended admittance to data.Chatbots become proficient at taking care of client questions precisely and productively,while instructive and logically pertinent reactions make a more regular and drawing in cooperation for clients.At last,web scratching enables chatbots to address a more extensive assortment of requests by conceding them admittance to a more extensive information base.By digging into the complexities of execution proficient LLM calibrating and underlining the basic job of web-scratched information,this examination offers a critical commitment to propelling custom chatbot plan and execution.The subsequent chatbots feature the monstrous capability of these advancements in making enlightening,easy to understand,and effective conversational specialists,eventually changing the manner in which clients cooperate with chatbots. 展开更多
关键词 LangChain retrieval augumental generation(RAG) fine tuning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部