Introduction: Bacterial skin and soft tissue infections (SSTIs) are a cause of frequent inpatient and outpatient care visits whose causative agents are associated with a high antimicrobial resistance burden. For insig...Introduction: Bacterial skin and soft tissue infections (SSTIs) are a cause of frequent inpatient and outpatient care visits whose causative agents are associated with a high antimicrobial resistance burden. For insights on antimicrobial susceptibilities in a rural setting, we examined specimens from suspected SSTIs from two public health facilities in Kenya. We additionally assessed antibiotic use, appropriateness of empiric therapy and risk factors for SSTI. Methodology: Between 2021 and 2023, 265 patients at Kisii and Nyamira County Referral hospitals were enrolled. Wound swabs/aspirates were collected and processed following standard microbiological procedures. Identification and antimicrobial susceptibility were performed using the VITEK 2 Compact platform. Demographic, clinical, and microbiological data were analyzed with R Statistical software. Results: S. aureus was isolated in 16.2% (43/265) of patients with a methicillin resistance (MRSA) proportion of 14% (6/43). While 13/15 drugs elicited susceptibilities ranging from 84% - 100%, penicillin (16%) and trimethoprim-sulfamethoxazole [TMP-SXT] (23%) yielded the lowest susceptibilities. Escherichia coli (n = 33), Klebsiella pneumoniae (n = 8), Pseudomonas aeruginosa (n = 8), and Citrobacter species (n = 4) were the most commonly isolated gram-negative species. Gram-negative strains showed high susceptibilities to most of the tested drugs (71% - 100%) with the exception of ampicillin (18%), TMP-SXT (33%), and first and second generation cephalosporins. Conclusions: The low MRSA prevalence and generally high antibiotic susceptibilities for S. aureus and gram-negative bacteria present opportunities for antibiotic stewardship in the study setting. Diminished susceptibilities against penicillin/ampicillin and TMP-SXT accord with prevailing local data and add a layer of evidence for their cautious empiric use.展开更多
Staphylococcus aureus(S. aureus) is a common pathogenic bacterium in animal husbandry that can cause diseases such as mastitis, skin infections, arthritis, and other ailments. The formation of biofilms threatens and e...Staphylococcus aureus(S. aureus) is a common pathogenic bacterium in animal husbandry that can cause diseases such as mastitis, skin infections, arthritis, and other ailments. The formation of biofilms threatens and exacerbates S. aureus infection by allowing the bacteria to adhere to pathological areas and livestock product surfaces, thus triggering animal health crises and safety issues with livestock products. To solve this problem, in this review, we provide a brief overview of the harm caused by S. aureus and its biofilms on livestock and animal byproducts(meat and dairy products). We also describe the ways in which S. aureus spreads in animals and the threats it poses to the livestock industry. The processes and molecular mechanisms involved in biofilm formation are then explained. Finally, we discuss strategies for the removal and eradication of S. aureus and biofilms in animal husbandry, including the use of antimicrobial peptides, plant extracts, nanoparticles, phages, and antibodies. These strategies to reduce the spread of S. aureus in animal husbandry help maintain livestock health and improve productivity to ensure the ecologically sustainable development of animal husbandry and the safety of livestock products.展开更多
Slightly acidic electrolyzed water(SAEW)has proven to be an efficient and novel sanitizer in food and agriculture field.This study assessed the efficacy of SAEW(30 mg/L)at 40℃on the inactivation of foodbome pathogens...Slightly acidic electrolyzed water(SAEW)has proven to be an efficient and novel sanitizer in food and agriculture field.This study assessed the efficacy of SAEW(30 mg/L)at 40℃on the inactivation of foodbome pathogens and detachment of multi-resistant Staphylococcus aureus(MRSA)biofilm.Furthermore.the underlying mechanism of MRS A biofilm under heated SAEW at 40℃treatment on metabolic profiles was investigated.The results showed that the heated SAEW at 40℃significantly effectively against foodbome pathogens of 1.96-7.56(lg(CFU/g))reduction in pork,chicken,spinach,and lettuce.The heated SAEW at 40℃treatment significantly reduced MRS A biofilm cells by 2.41(lg(CFU/cm^(2))).The synergistic effect of SAEW treatment showed intense anti-biofilm activity in decreasing cell density and impairing biofilm cell membranes.Global metabolic response of MRSA biofilms,treated by SAEW at 40℃,revealed the alterations of intracellular metabolites,including amino acids,organic acid,fatty acid,and lipid.Moreover,signaling pathways involved in amino acid metabolism,energy metabolism,nucleotide synthesis,carbohydrate metabolites,and lipid biosynthesis were functionally disrupted by the SAEW at 40℃treatment.As per our knowledge,this is the first research to uncover the potential mechanism of heated SAEW treatment against MRSA biofilm on food contact surface.展开更多
Background:Treatment of methicillin-resistant Staphylococcus aureus(MRSA)biofilm infections in implant placement surgery is limited by the lack of antimicrobial activity of titanium(Ti)implants.There is a need to expl...Background:Treatment of methicillin-resistant Staphylococcus aureus(MRSA)biofilm infections in implant placement surgery is limited by the lack of antimicrobial activity of titanium(Ti)implants.There is a need to explore more effective approaches for the treatment of MRSA biofilm infections.Methods:Herein,an interfacial functionalization strategy is proposed by the integration of mesoporous polydopamine nanoparticles(PDA),nitric oxide(NO)release donor sodium nitroprusside(SNP)and osteogenic growth peptide(OGP)onto Ti implants,denoted as Ti-PDA@SNP-OGP.The physical and chemical properties of Ti-PDA@SNP-OGP were assessed by scanning electron microscopy,X-ray photoelectron spectroscope,water contact angle,photothermal property and NO release behavior.The synergistic antibacterial effect and elimination of the MRSA biofilms were evaluated by 2′,7′-dichlorofluorescein diacetate probe,1-N-phenylnaphthylamine assay,adenosine triphosphate intensity,O-nitrophenyl-β-D-galactopyranoside hydrolysis activity,bicinchoninic acid leakage.Fluorescence staining,assays for alkaline phosphatase activity,collagen secretion and extracellular matrix mineralization,quantitative real‑time reverse transcription‑polymerase chain reaction,and enzyme-linked immunosorbent assay(ELISA)were used to evaluate the inflammatory response and osteogenic ability in bone marrow stromal cells(MSCs),RAW264.7 cells and their co-culture system.Giemsa staining,ELISA,micro-CT,hematoxylin and eosin,Masson's trichrome and immunohistochemistry staining were used to evaluate the eradication of MRSA biofilms,inhibition of inflammatory response,and promotion of osseointegration of Ti-PDA@SNP-OGP in vivo.Results:Ti-PDA@SNP-OGP displayed a synergistic photothermal and NO-dependent antibacterial effect against MRSA following near-infrared light(NIR)irradiation,and effectively eliminated the formed MRSA biofilms by inducing reactive oxygen species(ROS)-mediated oxidative stress,destroying bacterial membrane integrity and causing leakage of intracellular components(P<0.01).In vitro experiments revealed that Ti-PDA@SNP-OGP not only facilitated osteogenic differentiation of MSCs,but also promoted the polarization of pro-inflammatory M1 macrophages to the anti-inflammatory M2-phenotype(P<0.05 or P<0.01).The favorable osteo-immune microenvironment further facilitated osteogenesis of MSCs and the anti-inflammation of RAW264.7 cells via multiple paracrine signaling pathways(P<0.01).In vivo evaluation confirmed the aforementioned results and revealed that Ti-PDA@SNP-OGP induced ameliorative osseointegration in an MRSA-infected femoral defect implantation model(P<0.01).Conclusions:Ti-PDA@SNP-OGP is a promising multi-functional material for the high-efficient treatment of MRSA infections in implant replacement surgeries.展开更多
Staphylococcus aureus is a serious foodborne pathogen threatening food safety and public health.Especially the emergence of methicillin-resistant Staphylococcus aureus(MRSA)increased the difficulty of S.aureus treatme...Staphylococcus aureus is a serious foodborne pathogen threatening food safety and public health.Especially the emergence of methicillin-resistant Staphylococcus aureus(MRSA)increased the difficulty of S.aureus treatment.Staphyloxanthin is a crucial virulence factor of S.aureus.Blocking staphyloxanthin production could help the host immune system counteract the invading S.aureus cells.In this study,we first screened for staphyloxanthin inhibitors using a virtual screening method.The outcome of the virtual screening method resulted in the identification of eugenol(300μg/mL),which significantly inhibits the staphyloxanthin production in S.aureus ATCC 29213,S.aureus Newman,MRSA ATCC 43300 and MRSA ATCC BAA1717by 84.2%,63.5%,68.1%,and 79.5%,respectively.The outcome of the growth curve assay,field-emission scanning electron,and confocal laser scanning microscopy analyses confirmed that eugenol at the test concentration did not affect the morphology and growth of S.aureus.Moreover,the survival rate of S.aureus ATCC 29213 and MRSA ATCC 43300 under H_(2)O_(2) pressure decreased to 51.9%and 45.5%in the presence of eugenol,respectively.The quantitative RT-PCR and molecular simulation studies revealed that eugenol targets staphyloxanthin biosynthesis by downregulating the transcription of the crtM gene and inhibiting the activity of the CrtM enzyme.Taken together,we first determined that eugenol was a prominent compound for staphyloxanthin inhibitor to combat S.aureus especially MRSA infections.展开更多
Sensitive detection of Staphylococcus aureus enterotoxin B(SEB)is of importance for preventing food poisoning from threatening human health.In this work,an electrochemical and colorimetric dual-signal detection assay ...Sensitive detection of Staphylococcus aureus enterotoxin B(SEB)is of importance for preventing food poisoning from threatening human health.In this work,an electrochemical and colorimetric dual-signal detection assay of SEB was developed.The probe(Ab2/AuPt@Fe-N-C)was bound to SEB captured by Ab1,where the Ab2/AuPt@Fe-N-C triggered methylene blue degradation and resulted in the decrease of electrochemical signal.Furthermore,the probe catalyzed the oxidation of 3,3’,5,5’-tetramethyl biphenyl to generate a colorimetric absorbance at 652 nm.Once the target was captured and formed a sandwich-like complex,the color changed from colorless to blue.SEB detection by colorimetric and electrochemical methods showed a linear relationship in the concentration ranges of 0.0002-10.0000 and 0.0005-10.0000 ng/mL,with limits of detection of 0.0667 and 0.1670 pg/mL,respectively.The dual-signal biosensor was successfully used to detect SEB in milk and water samples,which has great potential in toxin detection in food and the environment.展开更多
Objective:To synthesize zinc oxide nanoparticles(ZnONPs)and evaluate their antibacterial and wound healing effects against wounds infected with methicillin-resistant Staphylococcus aureus(MRSA).Methods:ZnONPs were pre...Objective:To synthesize zinc oxide nanoparticles(ZnONPs)and evaluate their antibacterial and wound healing effects against wounds infected with methicillin-resistant Staphylococcus aureus(MRSA).Methods:ZnONPs were prepared by sol-gel method and characterized by X-ray diffraction(XRD)analysis and scanning electron microscopy(SEM).A total of 18 rabbits were divided into three groups:the ZnONPs group,the gentamicin group and the control group.A wound of 3 cm^(2) was inflicted on each rabbit and contaminated with MRSA inoculum.Treatment was started from the fourth day post-surgery.Wound healing,microbiological analysis,and histopathological analysis were performed to assess the efficacy of ZnONPs ointment.Results:XRD analysis confirmed the hexagonal wurtzite structure of the ZnONPs with an average crystallite size of 29.23 nm.SEM revealed discoid-shaped ZnONPs with a rough surface and an average size of 48.36 nm.Energy-dispersive X-ray analysis confirmed the purity of ZnONPs.Moreover,the particle size ranged from 100-700 nm with a high agglomeration trend.Treatment with ZnONPs promoted MRSA-infected wound healing.In addition,ZnONPs showed a good antibacterial effect as evidenced by a dose-dependent increase in the zone of inhibition.Conclusions:ZnONPs accelerate the healing of MRSA-infected wounds.Therefore,it can be explored for the treatment of MRSA infection.展开更多
Background:Staphylococcus aureus can cause serious infections by secreting many superantigen exotoxins in“carrier”or“pathogenic”states.HLA DQ and HLA DR humanized mice have been used as a small animal model to stu...Background:Staphylococcus aureus can cause serious infections by secreting many superantigen exotoxins in“carrier”or“pathogenic”states.HLA DQ and HLA DR humanized mice have been used as a small animal model to study the role of two molecules during S.aureus infection.However,the contribution of HLA DP to S.aureus infection is unknown yet.Methods:In this study,we have produced HLA DP401 and HLA DRA0101 humanized mice by microinjection of C57BL/6J zygotes.Neo-floxed IAβ+/-mice were crossbred with Ella-Cre and further crossbred with HLA DP401 or HLA-DRA0101 humanized mice.After several rounds of traditional crossbreeding,we finally obtained HLA DP401-IAβ-/-and HLA DRA-IAβ-/-humanized mice,in which human DP401 or DRA0101 molecule was introduced into IAβ-/-mice deficient in endogenous murine MHC classⅡmolecules.A transnasal infection murine model of S.aureus pneumonia was induced in the humanized mice by administering 2×108CFU of S.aureus Newman dropwise into the nasal cavity.The immune responses and histopathology changes were further assessed in lungs in these infected mice.Results:We evaluated the local and systemic effects of S.aureus delivered intranasally in HLA DP401-IAβ-/-and HLA DRA-IAβ-/-transgenic mice.S.aureus Newman infection significantly increased the m RNA level of IL 12p40 in lungs in humanized mice.An increase in IFN-γand IL-6 protein was observed in HLA DRA-IAβ-/-mice.We observed a declining trend in the percentage of F4/80+macrophages in lungs in HLA DP401-IAβ-/-mice and a decreasing ratio of CD4+to CD8+T cells in lungs in IAβ-/-mice and HLA DP401-IAβ-/-mice.A decreasing ratio of Vβ3+to Vβ8+T cells was also found in the lymph node of IAβ-/-mice and HLA DP401-IAβ-/-mice.S.aureus Newman infection resulted in a weaker pathological injury in lungs in IAβ-/-genetic background mice.Conclusion:These humanized mice will be an invaluable mouse model to resolve the pathological mechanism of S.aureus pneumonia and study what role DP molecule plays in S.aureus infection.展开更多
目的:通过Meta分析研究骨髓炎患者中耐甲氧西林金黄色葡萄球菌(MRSA)的感染率。方法:检索PubMed、Web of Science、中国知网、维普、万方和中国生物医学文献数据库(CBM)关于骨髓炎患者MRSA感染率的研究,检索时限为建库至2023年8月。由2...目的:通过Meta分析研究骨髓炎患者中耐甲氧西林金黄色葡萄球菌(MRSA)的感染率。方法:检索PubMed、Web of Science、中国知网、维普、万方和中国生物医学文献数据库(CBM)关于骨髓炎患者MRSA感染率的研究,检索时限为建库至2023年8月。由2位研究人员按照纳入与排除标准对所获文献独立进行筛选、提取,采用纽卡斯尔-渥太华量表评分(NOS)进行文献质量评价。以感染率为结局指标合并数据,采用R(4.3.1)进行Meta分析,并根据骨髓炎类型、患者年龄、研究地区进行亚组分析。结果:共纳入26篇文献,共包含20860名骨髓炎患者。Meta分析结果显示,骨髓炎患者MRSA感染率为0.240(95%CI:0.183~0.297)。亚组分析结果显示,椎体骨髓炎(VO)患者、18~60岁、北美地区骨髓炎患者的MRSA感染率更高。结论:骨髓炎患者中MRSA的感染率较高,需采取有效的预防和控制措施减少MRSA的传播。展开更多
Objective: To investigate the antibacterial effect of selected lactic acid bacteria(LAB)biofilms on the planktonic and biofilm population of methicillin-resistant Staphylococcus aureus(MRSA)(S547).Methods: In this stu...Objective: To investigate the antibacterial effect of selected lactic acid bacteria(LAB)biofilms on the planktonic and biofilm population of methicillin-resistant Staphylococcus aureus(MRSA)(S547).Methods: In this study, biofilm-forming LAB were isolated from tairu and kefir. Isolate Y1 and isolate KF were selected based on their prominent inhibition against test pathogens(using spot-on-agar method and agar-well-diffusion assay) and efficient biofilm production(using tissue culture plate method). They were then identified as Lactobacillus casei(L. casei) Y1 and Lactobacillus plantarum(L. plantarum) KF, respectively using16 S r DNA gene sequencing. The influence of incubation time, temperature and aeration on the biofilm production of L. casei Y1 and L. plantarum KF was also investigated using tissue culture plate method. The inhibitory activity of both the selected LAB biofilms was evaluated against MRSA(Institute for Medical Research code: S547) using L. plantarum ATCC 8014 as the reference strain.Results: L. casei Y1 showed the highest reduction of MRSA biofilms, by 3.53 log at48 h while L. plantarum KF records the highest reduction of 2.64 log at 36 h. In inhibiting planktonic population of MRSA(S547), both L. casei Y1 and L. plantarum KF biofilms recorded their maximum reduction of 4.13 log and 3.41 log at 24 h, respectively. Despite their inhibitory effects being time-dependent, both LAB biofilms exhibited good potential in controlling the biofilm and planktonic population of MRSA(S547).Conclusions: The results from this study could highlight the importance of analysing biofilms of LAB to enhance their antibacterial efficacy. Preferably, these protective biofilms of LAB could also be a better alternative to control the formation of biofilms by pathogens such as MRSA.展开更多
Objective:To determine the antibiotic resistance profile(ARP)of Staphylococcus(S.)aureus isolates and molecular typing of the methicillin-resistant S.aureus(MRSA)isolates from Tuanku Mizan Armed Forces Hospital(TMAFH)...Objective:To determine the antibiotic resistance profile(ARP)of Staphylococcus(S.)aureus isolates and molecular typing of the methicillin-resistant S.aureus(MRSA)isolates from Tuanku Mizan Armed Forces Hospital(TMAFH),Kuala Lumpur.Methods:The ARP and presence of the pvl gene were determined for 209 S.aureus isolates from clinical specimens.Of these,123 were methicillin-susceptible S.aureus(MSSA)isolates and 86 were MRSA isolates.All MRSA isolates were characterized using SCCmec typing and spa typing.Descriptive analysis was performed to compare the demographic data with the phenotypic and genotypic variables of the S.aureus isolates.Results:No vancomycin-intermediate and-resistant S.aureus(VISA and VRSA,respectively)were detected among the study isolates.The MSSA isolates showed low resistance rates to all tested antibiotics,were commonly invasive(28/42,66.7%),and mostly harboured pvl(35/42,83.3%).Meanwhile,MRSA isolates showed high resistance to penicillin(86/86,100%),ampicillin(86/86,100%),sulbactam/ampicillin(86/86,100%),cefuroxime(81/86,94.19%),cefoperazone(76/86,88.37%),azithromycin(56/86,65.12%),and erythromycin(54/86,62.79%).The majority of MRSA isolates were of SCCmec type IVh(65/86,75.58%),spa type t032(55/85,63.95%),and grouped into spaCC-t022(66/85,77.65%).The t032 type was found to be associated with resistance traits to azithromycin and erythromycin(P<0.05).We also found several spa types that are typically associated with hospital-,community-,and livestock-associated MRSA co-existing in our MRSA population.Conclusions:This study reflected the consistent absence of VISA and VRSA and corroborated the clonal shifting of MRSA isolates in the Malaysian MRSA isolates.展开更多
Objective:To describe clinical and epidemiological characteristics,antimicrobial susceptibility and mortality-associated factors of healthcare-associated infections(HCAIs)caused by Staphylococcus(S.)aureus in children...Objective:To describe clinical and epidemiological characteristics,antimicrobial susceptibility and mortality-associated factors of healthcare-associated infections(HCAIs)caused by Staphylococcus(S.)aureus in children.Methods:We conducted a retrospective,single-centre study of pediatric HCAIs caused by S.aureus from a tertiary care hospital in Turkey between February 2014 and December 2019.The clinical and epidemiological characteristics and antimicrobial susceptibility of the methicillin-susceptible and methicillin-resistant S.aureus(MSSA and MRSA)isolates was evaluated.Results:A total of 310 pediatric patients were examined.Overall,225(72.6%)isolates were MSSA and 85(27.4%)were MRSA.All S.aureus isolates were susceptible to teicoplanin,vancomycin,linezolid,tigecycline,mupirocin,and daptomycin.Penicillin resistance rates were high(89.0%),while fosfomycin,gentamicin,and clindamycin resistance rates were low(1.3%,1.0%,and 2.3%,respectively).Except susceptibility to fosfomycin,which was significantly lower in 2014 compared to 2018 and 2019,no significant difference was found in the antimicrobial susceptibility of S.aureus isolates between the years.Baseline characteristics and mortality rate were similar comparing MRSA and MSSA causing HCAIs.The mortality rate of HCAIs caused by S.aureus was 6.5%(20 patients).Malignancy was an independent risk factor associated with mortality in the multivariate analysis(OR 5.446,95%CI 1.573-18.849).Conclusions:Our findings demonstrate that MSSA remained the most causative agent of HCAIs caused by S.aureus.The mortality rate was 6.5%,the antibiotic resistance rate was quite high for penicillin and diagnosis of malignancy was the main risk factor for increasing mortality in children.These findings could help improve the management of HCAIs caused by S.aureus in children.展开更多
Staphylococcus aureus is a gram-staining positive cocci bacillus baterium and also one of the foodborne pathogens, which is a serious potential hazard to human health and food safety. We constructed an electroche...Staphylococcus aureus is a gram-staining positive cocci bacillus baterium and also one of the foodborne pathogens, which is a serious potential hazard to human health and food safety. We constructed an electrochemical biosensor for the detection of S. aureus based on nucleic acid aptamers to achieve highly specific detection of S. aureus. The detection of S. aureus was realized by using Aptamer (Apt) to capture S. aureus, which resulted in a change in the spatial conformation of Apt and a decrease in the electrochemical signal. Under the optimized experimental conditions, the detected electrochemical signals were positively correlated with the concentration of S. aureus with a linear range of 1 × 10<sup>1</sup> - 1 × 10<sup>5</sup> CFU/mL, a detection limit of 4.76 CFU/mL, and an experimental recovery of 97.43% - 99.37%. Therefore, we successfully constructed an electrochemical biosensor for the specific detection of S. aureus, which has the advantages of high specificity, sensitive detection and convenient operation.展开更多
Host-directed therapy(HDT)is an emerging novel approach for treating multidrug-resistant Staphylococcus aureus(S.aureus)infection.Functioning as the indispensable specific cellular receptor for a-toxin(Hla),a-disinteg...Host-directed therapy(HDT)is an emerging novel approach for treating multidrug-resistant Staphylococcus aureus(S.aureus)infection.Functioning as the indispensable specific cellular receptor for a-toxin(Hla),a-disintegrin and metalloproteinase 10(ADAM10)is exploited to accelerate S.aureus infection through diverse mechanisms.The extraordinary contribution of ADAM10 to S.aureus pathogenesis renders it an attractive HDT target for combating S.aureus infection.Our study is the first to demonstrate the indispensable role of ADAM10 in S.aureus-induced necroptosis,and it enhances our knowledge of the role of ADAM10 in S.aureus infection.Using a fluorogenic substrate assay,we further identified kaempferol as a potent ADAM10 inhibitor that effectively protected mice from S.aureus infection by suppressing Hla-mediated barrier disruption and necroptosis.Collectively,our work presents a novel hostdirected therapeutic strategy for using the promising candidate kaempferol to treat S.aureus infection and other diseases relevant to the disordered upregulation of ADAM10.展开更多
文摘Introduction: Bacterial skin and soft tissue infections (SSTIs) are a cause of frequent inpatient and outpatient care visits whose causative agents are associated with a high antimicrobial resistance burden. For insights on antimicrobial susceptibilities in a rural setting, we examined specimens from suspected SSTIs from two public health facilities in Kenya. We additionally assessed antibiotic use, appropriateness of empiric therapy and risk factors for SSTI. Methodology: Between 2021 and 2023, 265 patients at Kisii and Nyamira County Referral hospitals were enrolled. Wound swabs/aspirates were collected and processed following standard microbiological procedures. Identification and antimicrobial susceptibility were performed using the VITEK 2 Compact platform. Demographic, clinical, and microbiological data were analyzed with R Statistical software. Results: S. aureus was isolated in 16.2% (43/265) of patients with a methicillin resistance (MRSA) proportion of 14% (6/43). While 13/15 drugs elicited susceptibilities ranging from 84% - 100%, penicillin (16%) and trimethoprim-sulfamethoxazole [TMP-SXT] (23%) yielded the lowest susceptibilities. Escherichia coli (n = 33), Klebsiella pneumoniae (n = 8), Pseudomonas aeruginosa (n = 8), and Citrobacter species (n = 4) were the most commonly isolated gram-negative species. Gram-negative strains showed high susceptibilities to most of the tested drugs (71% - 100%) with the exception of ampicillin (18%), TMP-SXT (33%), and first and second generation cephalosporins. Conclusions: The low MRSA prevalence and generally high antibiotic susceptibilities for S. aureus and gram-negative bacteria present opportunities for antibiotic stewardship in the study setting. Diminished susceptibilities against penicillin/ampicillin and TMP-SXT accord with prevailing local data and add a layer of evidence for their cautious empiric use.
基金supported by the National Natural Science Foundation of China (31930106 and U22A20514, U23A20232)the National Key R&D Program of China (2022YFD1300404)+2 种基金the 2115 Talent Development Program of China Agricultural University (1041-00109019)the Pinduoduo-China Agricultural University Research Fund (PC2023A01001)the Special Fund for Henan Agriculture Research System (HARS-2213-Z1)。
文摘Staphylococcus aureus(S. aureus) is a common pathogenic bacterium in animal husbandry that can cause diseases such as mastitis, skin infections, arthritis, and other ailments. The formation of biofilms threatens and exacerbates S. aureus infection by allowing the bacteria to adhere to pathological areas and livestock product surfaces, thus triggering animal health crises and safety issues with livestock products. To solve this problem, in this review, we provide a brief overview of the harm caused by S. aureus and its biofilms on livestock and animal byproducts(meat and dairy products). We also describe the ways in which S. aureus spreads in animals and the threats it poses to the livestock industry. The processes and molecular mechanisms involved in biofilm formation are then explained. Finally, we discuss strategies for the removal and eradication of S. aureus and biofilms in animal husbandry, including the use of antimicrobial peptides, plant extracts, nanoparticles, phages, and antibodies. These strategies to reduce the spread of S. aureus in animal husbandry help maintain livestock health and improve productivity to ensure the ecologically sustainable development of animal husbandry and the safety of livestock products.
基金supported by Brain Korea (BK)21 Plus Project (4299990913942)funded by the Korean Government,Koreathe Collabo Project funded by the Ministry of SMEs and Startups (C1016120-01-02)the National Research Foundation of Korea (NRF) (2018007551)。
文摘Slightly acidic electrolyzed water(SAEW)has proven to be an efficient and novel sanitizer in food and agriculture field.This study assessed the efficacy of SAEW(30 mg/L)at 40℃on the inactivation of foodbome pathogens and detachment of multi-resistant Staphylococcus aureus(MRSA)biofilm.Furthermore.the underlying mechanism of MRS A biofilm under heated SAEW at 40℃treatment on metabolic profiles was investigated.The results showed that the heated SAEW at 40℃significantly effectively against foodbome pathogens of 1.96-7.56(lg(CFU/g))reduction in pork,chicken,spinach,and lettuce.The heated SAEW at 40℃treatment significantly reduced MRS A biofilm cells by 2.41(lg(CFU/cm^(2))).The synergistic effect of SAEW treatment showed intense anti-biofilm activity in decreasing cell density and impairing biofilm cell membranes.Global metabolic response of MRSA biofilms,treated by SAEW at 40℃,revealed the alterations of intracellular metabolites,including amino acids,organic acid,fatty acid,and lipid.Moreover,signaling pathways involved in amino acid metabolism,energy metabolism,nucleotide synthesis,carbohydrate metabolites,and lipid biosynthesis were functionally disrupted by the SAEW at 40℃treatment.As per our knowledge,this is the first research to uncover the potential mechanism of heated SAEW treatment against MRSA biofilm on food contact surface.
基金financially supported by the National Natural Science Foundation of China(82101069,82102537,82160411,82002278)the Natural Science Foundation of Chongqing Science and Technology Commission(CSTC2021JCYJ-MSXMX0170,CSTB2022BSXM-JCX0039)+2 种基金the First Affiliated Hospital of Chongqing Medical University Cultivating Fund(PYJJ2021-02)the Beijing Municipal Science&Technology Commission(Z221100007422130)the Youth Incubation Program of Medical Science and Technology of PLA(21QNPY116).
文摘Background:Treatment of methicillin-resistant Staphylococcus aureus(MRSA)biofilm infections in implant placement surgery is limited by the lack of antimicrobial activity of titanium(Ti)implants.There is a need to explore more effective approaches for the treatment of MRSA biofilm infections.Methods:Herein,an interfacial functionalization strategy is proposed by the integration of mesoporous polydopamine nanoparticles(PDA),nitric oxide(NO)release donor sodium nitroprusside(SNP)and osteogenic growth peptide(OGP)onto Ti implants,denoted as Ti-PDA@SNP-OGP.The physical and chemical properties of Ti-PDA@SNP-OGP were assessed by scanning electron microscopy,X-ray photoelectron spectroscope,water contact angle,photothermal property and NO release behavior.The synergistic antibacterial effect and elimination of the MRSA biofilms were evaluated by 2′,7′-dichlorofluorescein diacetate probe,1-N-phenylnaphthylamine assay,adenosine triphosphate intensity,O-nitrophenyl-β-D-galactopyranoside hydrolysis activity,bicinchoninic acid leakage.Fluorescence staining,assays for alkaline phosphatase activity,collagen secretion and extracellular matrix mineralization,quantitative real‑time reverse transcription‑polymerase chain reaction,and enzyme-linked immunosorbent assay(ELISA)were used to evaluate the inflammatory response and osteogenic ability in bone marrow stromal cells(MSCs),RAW264.7 cells and their co-culture system.Giemsa staining,ELISA,micro-CT,hematoxylin and eosin,Masson's trichrome and immunohistochemistry staining were used to evaluate the eradication of MRSA biofilms,inhibition of inflammatory response,and promotion of osseointegration of Ti-PDA@SNP-OGP in vivo.Results:Ti-PDA@SNP-OGP displayed a synergistic photothermal and NO-dependent antibacterial effect against MRSA following near-infrared light(NIR)irradiation,and effectively eliminated the formed MRSA biofilms by inducing reactive oxygen species(ROS)-mediated oxidative stress,destroying bacterial membrane integrity and causing leakage of intracellular components(P<0.01).In vitro experiments revealed that Ti-PDA@SNP-OGP not only facilitated osteogenic differentiation of MSCs,but also promoted the polarization of pro-inflammatory M1 macrophages to the anti-inflammatory M2-phenotype(P<0.05 or P<0.01).The favorable osteo-immune microenvironment further facilitated osteogenesis of MSCs and the anti-inflammation of RAW264.7 cells via multiple paracrine signaling pathways(P<0.01).In vivo evaluation confirmed the aforementioned results and revealed that Ti-PDA@SNP-OGP induced ameliorative osseointegration in an MRSA-infected femoral defect implantation model(P<0.01).Conclusions:Ti-PDA@SNP-OGP is a promising multi-functional material for the high-efficient treatment of MRSA infections in implant replacement surgeries.
基金supported by the National Natural Science Foundation of China (31972169 and 32001798)。
文摘Staphylococcus aureus is a serious foodborne pathogen threatening food safety and public health.Especially the emergence of methicillin-resistant Staphylococcus aureus(MRSA)increased the difficulty of S.aureus treatment.Staphyloxanthin is a crucial virulence factor of S.aureus.Blocking staphyloxanthin production could help the host immune system counteract the invading S.aureus cells.In this study,we first screened for staphyloxanthin inhibitors using a virtual screening method.The outcome of the virtual screening method resulted in the identification of eugenol(300μg/mL),which significantly inhibits the staphyloxanthin production in S.aureus ATCC 29213,S.aureus Newman,MRSA ATCC 43300 and MRSA ATCC BAA1717by 84.2%,63.5%,68.1%,and 79.5%,respectively.The outcome of the growth curve assay,field-emission scanning electron,and confocal laser scanning microscopy analyses confirmed that eugenol at the test concentration did not affect the morphology and growth of S.aureus.Moreover,the survival rate of S.aureus ATCC 29213 and MRSA ATCC 43300 under H_(2)O_(2) pressure decreased to 51.9%and 45.5%in the presence of eugenol,respectively.The quantitative RT-PCR and molecular simulation studies revealed that eugenol targets staphyloxanthin biosynthesis by downregulating the transcription of the crtM gene and inhibiting the activity of the CrtM enzyme.Taken together,we first determined that eugenol was a prominent compound for staphyloxanthin inhibitor to combat S.aureus especially MRSA infections.
基金This work was financially supported by Major Science and Technology Project of Yunnan Province(202302AE090022)Key Research and Development Program of Yunnan(202203AC100010)+4 种基金the National Natural Science Foundation of China(32160597,32160236,32371463)National Key Research and Development Program of China(2022YFC2601604)Cardiovascular Ultrasound Innovation Team of Yunnan Province(202305AS350021)Spring City Plan:the High-level Talent Promotion and Training Project of Kunming(2022SCP001)the second phase of“Double-First Class”Program Construction of Yunnan University.
文摘Sensitive detection of Staphylococcus aureus enterotoxin B(SEB)is of importance for preventing food poisoning from threatening human health.In this work,an electrochemical and colorimetric dual-signal detection assay of SEB was developed.The probe(Ab2/AuPt@Fe-N-C)was bound to SEB captured by Ab1,where the Ab2/AuPt@Fe-N-C triggered methylene blue degradation and resulted in the decrease of electrochemical signal.Furthermore,the probe catalyzed the oxidation of 3,3’,5,5’-tetramethyl biphenyl to generate a colorimetric absorbance at 652 nm.Once the target was captured and formed a sandwich-like complex,the color changed from colorless to blue.SEB detection by colorimetric and electrochemical methods showed a linear relationship in the concentration ranges of 0.0002-10.0000 and 0.0005-10.0000 ng/mL,with limits of detection of 0.0667 and 0.1670 pg/mL,respectively.The dual-signal biosensor was successfully used to detect SEB in milk and water samples,which has great potential in toxin detection in food and the environment.
文摘Objective:To synthesize zinc oxide nanoparticles(ZnONPs)and evaluate their antibacterial and wound healing effects against wounds infected with methicillin-resistant Staphylococcus aureus(MRSA).Methods:ZnONPs were prepared by sol-gel method and characterized by X-ray diffraction(XRD)analysis and scanning electron microscopy(SEM).A total of 18 rabbits were divided into three groups:the ZnONPs group,the gentamicin group and the control group.A wound of 3 cm^(2) was inflicted on each rabbit and contaminated with MRSA inoculum.Treatment was started from the fourth day post-surgery.Wound healing,microbiological analysis,and histopathological analysis were performed to assess the efficacy of ZnONPs ointment.Results:XRD analysis confirmed the hexagonal wurtzite structure of the ZnONPs with an average crystallite size of 29.23 nm.SEM revealed discoid-shaped ZnONPs with a rough surface and an average size of 48.36 nm.Energy-dispersive X-ray analysis confirmed the purity of ZnONPs.Moreover,the particle size ranged from 100-700 nm with a high agglomeration trend.Treatment with ZnONPs promoted MRSA-infected wound healing.In addition,ZnONPs showed a good antibacterial effect as evidenced by a dose-dependent increase in the zone of inhibition.Conclusions:ZnONPs accelerate the healing of MRSA-infected wounds.Therefore,it can be explored for the treatment of MRSA infection.
基金National Science and Technology Major Project,Grant/Award Number:2016YFD0500208,2017ZX10304402-001-012 and 2017ZX10304402-001-006Shanghai Science and Technology Commission“R&D public service platform and institutional capacity improvement project”,Grant/Award Number:21DZ2291300Shanghai Public Health Clinical Center projects,Grant/Award Number:KY-GW-2021-39,KY-GW-2019-19 and KY-GW-2019-11。
文摘Background:Staphylococcus aureus can cause serious infections by secreting many superantigen exotoxins in“carrier”or“pathogenic”states.HLA DQ and HLA DR humanized mice have been used as a small animal model to study the role of two molecules during S.aureus infection.However,the contribution of HLA DP to S.aureus infection is unknown yet.Methods:In this study,we have produced HLA DP401 and HLA DRA0101 humanized mice by microinjection of C57BL/6J zygotes.Neo-floxed IAβ+/-mice were crossbred with Ella-Cre and further crossbred with HLA DP401 or HLA-DRA0101 humanized mice.After several rounds of traditional crossbreeding,we finally obtained HLA DP401-IAβ-/-and HLA DRA-IAβ-/-humanized mice,in which human DP401 or DRA0101 molecule was introduced into IAβ-/-mice deficient in endogenous murine MHC classⅡmolecules.A transnasal infection murine model of S.aureus pneumonia was induced in the humanized mice by administering 2×108CFU of S.aureus Newman dropwise into the nasal cavity.The immune responses and histopathology changes were further assessed in lungs in these infected mice.Results:We evaluated the local and systemic effects of S.aureus delivered intranasally in HLA DP401-IAβ-/-and HLA DRA-IAβ-/-transgenic mice.S.aureus Newman infection significantly increased the m RNA level of IL 12p40 in lungs in humanized mice.An increase in IFN-γand IL-6 protein was observed in HLA DRA-IAβ-/-mice.We observed a declining trend in the percentage of F4/80+macrophages in lungs in HLA DP401-IAβ-/-mice and a decreasing ratio of CD4+to CD8+T cells in lungs in IAβ-/-mice and HLA DP401-IAβ-/-mice.A decreasing ratio of Vβ3+to Vβ8+T cells was also found in the lymph node of IAβ-/-mice and HLA DP401-IAβ-/-mice.S.aureus Newman infection resulted in a weaker pathological injury in lungs in IAβ-/-genetic background mice.Conclusion:These humanized mice will be an invaluable mouse model to resolve the pathological mechanism of S.aureus pneumonia and study what role DP molecule plays in S.aureus infection.
文摘目的:通过Meta分析研究骨髓炎患者中耐甲氧西林金黄色葡萄球菌(MRSA)的感染率。方法:检索PubMed、Web of Science、中国知网、维普、万方和中国生物医学文献数据库(CBM)关于骨髓炎患者MRSA感染率的研究,检索时限为建库至2023年8月。由2位研究人员按照纳入与排除标准对所获文献独立进行筛选、提取,采用纽卡斯尔-渥太华量表评分(NOS)进行文献质量评价。以感染率为结局指标合并数据,采用R(4.3.1)进行Meta分析,并根据骨髓炎类型、患者年龄、研究地区进行亚组分析。结果:共纳入26篇文献,共包含20860名骨髓炎患者。Meta分析结果显示,骨髓炎患者MRSA感染率为0.240(95%CI:0.183~0.297)。亚组分析结果显示,椎体骨髓炎(VO)患者、18~60岁、北美地区骨髓炎患者的MRSA感染率更高。结论:骨髓炎患者中MRSA的感染率较高,需采取有效的预防和控制措施减少MRSA的传播。
基金Funding for this project was provided by Fundamental Research Grant Scheme(FRGS)of the Ministry of Higher Education,Malaysia(zuhainis@upm.edu.my)(Grant number:5524488)
文摘Objective: To investigate the antibacterial effect of selected lactic acid bacteria(LAB)biofilms on the planktonic and biofilm population of methicillin-resistant Staphylococcus aureus(MRSA)(S547).Methods: In this study, biofilm-forming LAB were isolated from tairu and kefir. Isolate Y1 and isolate KF were selected based on their prominent inhibition against test pathogens(using spot-on-agar method and agar-well-diffusion assay) and efficient biofilm production(using tissue culture plate method). They were then identified as Lactobacillus casei(L. casei) Y1 and Lactobacillus plantarum(L. plantarum) KF, respectively using16 S r DNA gene sequencing. The influence of incubation time, temperature and aeration on the biofilm production of L. casei Y1 and L. plantarum KF was also investigated using tissue culture plate method. The inhibitory activity of both the selected LAB biofilms was evaluated against MRSA(Institute for Medical Research code: S547) using L. plantarum ATCC 8014 as the reference strain.Results: L. casei Y1 showed the highest reduction of MRSA biofilms, by 3.53 log at48 h while L. plantarum KF records the highest reduction of 2.64 log at 36 h. In inhibiting planktonic population of MRSA(S547), both L. casei Y1 and L. plantarum KF biofilms recorded their maximum reduction of 4.13 log and 3.41 log at 24 h, respectively. Despite their inhibitory effects being time-dependent, both LAB biofilms exhibited good potential in controlling the biofilm and planktonic population of MRSA(S547).Conclusions: The results from this study could highlight the importance of analysing biofilms of LAB to enhance their antibacterial efficacy. Preferably, these protective biofilms of LAB could also be a better alternative to control the formation of biofilms by pathogens such as MRSA.
基金The study was funded by the UPNM Short Term Grant (UPNM/2019/GPJP/SP/1).
文摘Objective:To determine the antibiotic resistance profile(ARP)of Staphylococcus(S.)aureus isolates and molecular typing of the methicillin-resistant S.aureus(MRSA)isolates from Tuanku Mizan Armed Forces Hospital(TMAFH),Kuala Lumpur.Methods:The ARP and presence of the pvl gene were determined for 209 S.aureus isolates from clinical specimens.Of these,123 were methicillin-susceptible S.aureus(MSSA)isolates and 86 were MRSA isolates.All MRSA isolates were characterized using SCCmec typing and spa typing.Descriptive analysis was performed to compare the demographic data with the phenotypic and genotypic variables of the S.aureus isolates.Results:No vancomycin-intermediate and-resistant S.aureus(VISA and VRSA,respectively)were detected among the study isolates.The MSSA isolates showed low resistance rates to all tested antibiotics,were commonly invasive(28/42,66.7%),and mostly harboured pvl(35/42,83.3%).Meanwhile,MRSA isolates showed high resistance to penicillin(86/86,100%),ampicillin(86/86,100%),sulbactam/ampicillin(86/86,100%),cefuroxime(81/86,94.19%),cefoperazone(76/86,88.37%),azithromycin(56/86,65.12%),and erythromycin(54/86,62.79%).The majority of MRSA isolates were of SCCmec type IVh(65/86,75.58%),spa type t032(55/85,63.95%),and grouped into spaCC-t022(66/85,77.65%).The t032 type was found to be associated with resistance traits to azithromycin and erythromycin(P<0.05).We also found several spa types that are typically associated with hospital-,community-,and livestock-associated MRSA co-existing in our MRSA population.Conclusions:This study reflected the consistent absence of VISA and VRSA and corroborated the clonal shifting of MRSA isolates in the Malaysian MRSA isolates.
文摘Objective:To describe clinical and epidemiological characteristics,antimicrobial susceptibility and mortality-associated factors of healthcare-associated infections(HCAIs)caused by Staphylococcus(S.)aureus in children.Methods:We conducted a retrospective,single-centre study of pediatric HCAIs caused by S.aureus from a tertiary care hospital in Turkey between February 2014 and December 2019.The clinical and epidemiological characteristics and antimicrobial susceptibility of the methicillin-susceptible and methicillin-resistant S.aureus(MSSA and MRSA)isolates was evaluated.Results:A total of 310 pediatric patients were examined.Overall,225(72.6%)isolates were MSSA and 85(27.4%)were MRSA.All S.aureus isolates were susceptible to teicoplanin,vancomycin,linezolid,tigecycline,mupirocin,and daptomycin.Penicillin resistance rates were high(89.0%),while fosfomycin,gentamicin,and clindamycin resistance rates were low(1.3%,1.0%,and 2.3%,respectively).Except susceptibility to fosfomycin,which was significantly lower in 2014 compared to 2018 and 2019,no significant difference was found in the antimicrobial susceptibility of S.aureus isolates between the years.Baseline characteristics and mortality rate were similar comparing MRSA and MSSA causing HCAIs.The mortality rate of HCAIs caused by S.aureus was 6.5%(20 patients).Malignancy was an independent risk factor associated with mortality in the multivariate analysis(OR 5.446,95%CI 1.573-18.849).Conclusions:Our findings demonstrate that MSSA remained the most causative agent of HCAIs caused by S.aureus.The mortality rate was 6.5%,the antibiotic resistance rate was quite high for penicillin and diagnosis of malignancy was the main risk factor for increasing mortality in children.These findings could help improve the management of HCAIs caused by S.aureus in children.
文摘Staphylococcus aureus is a gram-staining positive cocci bacillus baterium and also one of the foodborne pathogens, which is a serious potential hazard to human health and food safety. We constructed an electrochemical biosensor for the detection of S. aureus based on nucleic acid aptamers to achieve highly specific detection of S. aureus. The detection of S. aureus was realized by using Aptamer (Apt) to capture S. aureus, which resulted in a change in the spatial conformation of Apt and a decrease in the electrochemical signal. Under the optimized experimental conditions, the detected electrochemical signals were positively correlated with the concentration of S. aureus with a linear range of 1 × 10<sup>1</sup> - 1 × 10<sup>5</sup> CFU/mL, a detection limit of 4.76 CFU/mL, and an experimental recovery of 97.43% - 99.37%. Therefore, we successfully constructed an electrochemical biosensor for the specific detection of S. aureus, which has the advantages of high specificity, sensitive detection and convenient operation.
基金supported by the National Natural Science Foundation of China(U22A20523,32172912,and 32102722)the Interdisciplinary Integration and Innovation Project of Jilin University(JLUXKJC2021QZ04)。
文摘Host-directed therapy(HDT)is an emerging novel approach for treating multidrug-resistant Staphylococcus aureus(S.aureus)infection.Functioning as the indispensable specific cellular receptor for a-toxin(Hla),a-disintegrin and metalloproteinase 10(ADAM10)is exploited to accelerate S.aureus infection through diverse mechanisms.The extraordinary contribution of ADAM10 to S.aureus pathogenesis renders it an attractive HDT target for combating S.aureus infection.Our study is the first to demonstrate the indispensable role of ADAM10 in S.aureus-induced necroptosis,and it enhances our knowledge of the role of ADAM10 in S.aureus infection.Using a fluorogenic substrate assay,we further identified kaempferol as a potent ADAM10 inhibitor that effectively protected mice from S.aureus infection by suppressing Hla-mediated barrier disruption and necroptosis.Collectively,our work presents a novel hostdirected therapeutic strategy for using the promising candidate kaempferol to treat S.aureus infection and other diseases relevant to the disordered upregulation of ADAM10.