As titanium alloy is chemically reactive,it is very difficult to join by conventional welding techniques.Titanium alloys can easily pick up nitrogen and oxygen from the atmosphere.In the fusion welding method,brittle ...As titanium alloy is chemically reactive,it is very difficult to join by conventional welding techniques.Titanium alloys can easily pick up nitrogen and oxygen from the atmosphere.In the fusion welding method,brittle intermetallic compounds are formed when joining titanium alloy and stainless steel,which decrease the mechanical behavior of the couples.Hence,for joining of titanium alloy,diffusion bonding is recommended.This work dealt with the measurement of feasible process parameters for diffusion bonding of Ti-6Al-4V and AISI 304 stainless steel with silver as an intermediate layer.The quality of the bonds was confirmed by the lap shear test and microstructural analysis.With the experimental results obtained,diffusion bonding windows were constructed and this will act as reference maps to identify the process parameters for obtaining defect free bond.Bonding was successful in the temperature range of 750-800 °C.Maximum lap shear strength was achieved under a bonding pressure of 5 MPa and holding time of 90 min.展开更多
To examine the influence of grain boundary engineering(GBE)on the work hardening behavior,the tensile tests were carried out on the non-GBE and GBE AL6XN super-austenitic stainless steel(ASS)samples with a comparable ...To examine the influence of grain boundary engineering(GBE)on the work hardening behavior,the tensile tests were carried out on the non-GBE and GBE AL6XN super-austenitic stainless steel(ASS)samples with a comparable grain size at two strain rates of 10^(-2)s^(-1)and 10^(-4)s^(-1).The evolution of deformation microstructures was revealed by transmission electron microscopy(TEM)and quasi-in situ electron backscatter diffraction(EBSD)observations.The results show that the influence of GBE on the mechanical properties of AL6XN super-ASS is mainly manifested in the change of work hardening behavior.At the early stage of plastic deformation,GBE samples show a slightly lowered work hardening rate,since the special grain boundaries(SBs)of a high fraction induce a higher dislocation free path and a weaker back stress;however,with increasing plastic deformation amount,the work hardening rate of GBE samples gradually surpasses that of non-GBE samples due to the better capacity of maintainable work hardening that is profited from the inhibited dislocation annihilation by SBs.In a word,the enhanced capacity of sustained work hardening effectively postpones the appearance of necking point and thus efficaciously ameliorates the ductility of GBE samples under the premise of little changes in yield strength and ultimate tensile strength.展开更多
The isothermal grain growth behavior for a new ultrahigh-strength stainless steel (UHSSS) is investigated in temperature range from 900 to 1150 ℃ and holding time range from 0 to 20 min. In the temperature range from...The isothermal grain growth behavior for a new ultrahigh-strength stainless steel (UHSSS) is investigated in temperature range from 900 to 1150 ℃ and holding time range from 0 to 20 min. In the temperature range from 1000 to 1050 ℃, a bimodal grain size distribution was induced by different austenite grain growth rates which resulted from the weakened pin-ning effect by the partial dissolution of M6C particles along austenite grain boundaries. Further raising heating temperatures, M6C particles almost dissolved and the bimodal grain size distribution phenomenon became weakened, indicating that the austenite grain coarsening temperature of the new UHSSS was close to 1050 ℃. According to the present experimental results, a pragmatic mathematical model based on the Arrhenius equations was developed to predict the austenite grain growth process, which elaborated the influence of heating temperature, holding time and initial grain size on the austenite grain growth. Predictions for the new UHSSS presented a good agreement with experimental results.展开更多
基金All India Council for Technical Education (AICTE),New Delhi,India,for the financial support rendered under the Grant No:8023/ RID/RID/RPS-76/2010-11
文摘As titanium alloy is chemically reactive,it is very difficult to join by conventional welding techniques.Titanium alloys can easily pick up nitrogen and oxygen from the atmosphere.In the fusion welding method,brittle intermetallic compounds are formed when joining titanium alloy and stainless steel,which decrease the mechanical behavior of the couples.Hence,for joining of titanium alloy,diffusion bonding is recommended.This work dealt with the measurement of feasible process parameters for diffusion bonding of Ti-6Al-4V and AISI 304 stainless steel with silver as an intermediate layer.The quality of the bonds was confirmed by the lap shear test and microstructural analysis.With the experimental results obtained,diffusion bonding windows were constructed and this will act as reference maps to identify the process parameters for obtaining defect free bond.Bonding was successful in the temperature range of 750-800 °C.Maximum lap shear strength was achieved under a bonding pressure of 5 MPa and holding time of 90 min.
基金financially supported by the National Natural Science Foundation of China(NSFC)under Grant Nos.51871048 and 52171108。
文摘To examine the influence of grain boundary engineering(GBE)on the work hardening behavior,the tensile tests were carried out on the non-GBE and GBE AL6XN super-austenitic stainless steel(ASS)samples with a comparable grain size at two strain rates of 10^(-2)s^(-1)and 10^(-4)s^(-1).The evolution of deformation microstructures was revealed by transmission electron microscopy(TEM)and quasi-in situ electron backscatter diffraction(EBSD)observations.The results show that the influence of GBE on the mechanical properties of AL6XN super-ASS is mainly manifested in the change of work hardening behavior.At the early stage of plastic deformation,GBE samples show a slightly lowered work hardening rate,since the special grain boundaries(SBs)of a high fraction induce a higher dislocation free path and a weaker back stress;however,with increasing plastic deformation amount,the work hardening rate of GBE samples gradually surpasses that of non-GBE samples due to the better capacity of maintainable work hardening that is profited from the inhibited dislocation annihilation by SBs.In a word,the enhanced capacity of sustained work hardening effectively postpones the appearance of necking point and thus efficaciously ameliorates the ductility of GBE samples under the premise of little changes in yield strength and ultimate tensile strength.
基金The authors gratefully acknowledge the support from the National Key Research and Development Program of China(2016YFB0300104).
文摘The isothermal grain growth behavior for a new ultrahigh-strength stainless steel (UHSSS) is investigated in temperature range from 900 to 1150 ℃ and holding time range from 0 to 20 min. In the temperature range from 1000 to 1050 ℃, a bimodal grain size distribution was induced by different austenite grain growth rates which resulted from the weakened pin-ning effect by the partial dissolution of M6C particles along austenite grain boundaries. Further raising heating temperatures, M6C particles almost dissolved and the bimodal grain size distribution phenomenon became weakened, indicating that the austenite grain coarsening temperature of the new UHSSS was close to 1050 ℃. According to the present experimental results, a pragmatic mathematical model based on the Arrhenius equations was developed to predict the austenite grain growth process, which elaborated the influence of heating temperature, holding time and initial grain size on the austenite grain growth. Predictions for the new UHSSS presented a good agreement with experimental results.