期刊文献+
共找到5,155篇文章
< 1 2 250 >
每页显示 20 50 100
Hot cracking susceptibility research in BTW1 austenitic high-manganese wear-resistant steel
1
作者 WU Wei 《Baosteel Technical Research》 CAS 2021年第4期21-27,共7页
Baosteel’s first BTW1 austenitic high-manganese wear-resistant steel exhibits strong deformation-induced hardening characteristics.Compared with common low-alloy martensitic wear-resistant steels in the market, it ha... Baosteel’s first BTW1 austenitic high-manganese wear-resistant steel exhibits strong deformation-induced hardening characteristics.Compared with common low-alloy martensitic wear-resistant steels in the market, it has improved impact wear resistance, hard abrasive wear, erosion wear performance, and impact toughness.The metallurgical properties of such austenitic wear-resistant steel lead to the risk of failure because of hot cracking defects in the welded structure.In wear-resistant applications, evaluating hot cracking susceptibility is necessary to avoid the effect of welding defects.In this study, the Varestraint test is used to quantitatively analyze and evaluate the hot cracking susceptibility of BTW1 austenitic high-manganese wear-resistant steel.The test results show that by controlling the content of impurity elements and grain refinement, BTW1 austenitic high-manganese wear-resistant steel effectively reduces hot cracking tendency and has a low incidence of hot cracking under small strain conditions.The developed matching welding process can effectively avoid the influence of hot cracking susceptibility. 展开更多
关键词 BTW1 austenitic high-manganese wear-resistant steel Varestraint test hot cracking hot cracking susceptibility thermal crack-susceptible region
下载PDF
Lap-Shear Performance of Weld-Bonded Mg Alloy and Austenitic Stainless Steel in Three-Sheet Stack-Up
2
作者 Sunusi Marwana Manladan Mukhtar Fatihu Hamza +1 位作者 Singh Ramesh Zhen Luo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期342-353,共12页
With the growing interest in utilizing Mg and austenitic stainless steel(ASS)in the automotive sector,joining them together in three-sheet configuration is inevitable.However,achieving this task presents considerable ... With the growing interest in utilizing Mg and austenitic stainless steel(ASS)in the automotive sector,joining them together in three-sheet configuration is inevitable.However,achieving this task presents considerable challenges due to the large differences in their physical,metallurgical and mechanical properties.To overcome these challenges,the feasibility of using weld-bonding to join Mg alloy/ASS/ASS was investigated.The nugget formation,interface characteristics,microstructure and mechanical properties of the joints were investigated.The results show that the connection between the Mg alloy and upper ASS was achieved through the combined effect of the cured adhesive and weld-brazing in the weld zone.On the other hand,a metallurgical bond was formed at the ASS/ASS interface.The Mg nugget microstructure exhibited fine columar grains composed predominantly of primaryα-Mg grains along with a eutectic mixture ofα-Mg andβ-Mg17Al12.The nugget formed at the ASS/ASS interface consisted largely of columnar grains of austenite,with some equiaxed dendritic grains formed at the centerline of the joint.The weld-bonded joints exhibited an average peak load and energy absorption of about 8.5 kN and 17 J,respectively(the conventional RSW joints failed with minimal or no load application).The failure mode of the joints changed with increasing welding current from interfacial failure via the Mg nugget/upper ASS interface to partial interfacial failure(part of the Mg nugget was pulled out of the Mg sheet).Both failure modes were accompanied by cohesive failure in the adhesive zone. 展开更多
关键词 Weld-bonding Resistance spot welding austenitic stainless steel Mg alloy Failure mode
下载PDF
Effect of Mn addition on microstructure and mechanical properties of GX40CrNiSi25-12 austenitic heat resistant steel
3
作者 Guan-yu Jiang Meng-wu Wu +2 位作者 Xiao-guang Yang Hui Wang Yu-yuan Zhu 《China Foundry》 SCIE EI CAS CSCD 2024年第3期205-212,共8页
Three types of steels were designed on the basis of GX40CrNiSi25-12 austenitic heat resistant steel by adding different Mn contents(2wt.%,6wt.%,and 12wt.%).Thermodynamic calculation,microstructure characterization and... Three types of steels were designed on the basis of GX40CrNiSi25-12 austenitic heat resistant steel by adding different Mn contents(2wt.%,6wt.%,and 12wt.%).Thermodynamic calculation,microstructure characterization and mechanical property tests were conducted to investigate the effect of Mn addition on the microstructure and mechanical properties of the austenitic heat resistant steel.Results show that the matrix structure in all the three types of steels at room temperature is completely austenite.Carbides NbC and M_(23)C_(6)precipitate at grain boundaries of austenite matrix.With the increase of Mn content,the number of carbides increases and their distribution becomes more uniform.With the Mn content increases from 1.99%to 12.06%,the ultimate tensile strength,yield strength and elongation increase by 14.6%,8.0%and 46.3%,respectively.The improvement of the mechanical properties of austenitic steels can be explained by utilizing classic theories of alloy strengthening,including solid solution strengthening,precipitation strengthening,and grain refinement.The increase in alloy strength can be attributed to solid solution strengthening and precipitation strengthening caused by the addition of Mn.The improvement of the plasticity of austenitic steels can be explained from two aspects:grain refinement and homogenization of precipitated phases. 展开更多
关键词 austenitic heat resistant steel MANGANESE MICROSTRUCTURE mechanical properties
下载PDF
Effects of interstitial cluster mobility on dislocation loops evolution under irradiation of austenitic steel
4
作者 Xin‑Hua Yan Lu Sun +5 位作者 Du Zhou Teng Xie Chang Peng Ye‑Xin Yang Li Chen Zhen‑Feng Tong 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第8期69-78,共10页
The evolution of dislocation loops in austenitic steels irradiated with Fe^(+)is investigated using cluster dynamics(CD)simulations by developing a CD model.The CD predictions are compared with experimental results in... The evolution of dislocation loops in austenitic steels irradiated with Fe^(+)is investigated using cluster dynamics(CD)simulations by developing a CD model.The CD predictions are compared with experimental results in the literature.The number density and average diameter of the dislocation loops obtained from the CD simulations are in good agreement with the experimental data obtained from transmission electron microscopy(TEM)observations of Fe~+-irradiated Solution Annealed 304,Cold Worked 316,and HR3 austenitic steels in the literature.The CD simulation results demonstrate that the diffusion of in-cascade interstitial clusters plays a major role in the dislocation loop density and dislocation loop growth;in particular,for the HR3 austenitic steel,the CD model has verified the effect of temperature on the density and size of the dislocation loops. 展开更多
关键词 Cluster dynamics Dislocation loops In-cascade interstitial clusters austenitic steels
下载PDF
Interplay between temperature-dependent strengthening mechanisms and mechanical stability in high-performance austenitic stainless steels
5
作者 Mohammad Javad Sohrabi Hamed Mirzadeh +3 位作者 Saeed Sadeghpour Milad Zolfipour Aghdam Abdol Reza Geranmayeh Reza Mahmudi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2182-2188,共7页
The effects of deformation temperature on the transformation-induced plasticity(TRIP)-aided 304L,twinning-induced plasti-city(TWIP)-assisted 316L,and highly alloyed stable 904L austenitic stainless steels were compare... The effects of deformation temperature on the transformation-induced plasticity(TRIP)-aided 304L,twinning-induced plasti-city(TWIP)-assisted 316L,and highly alloyed stable 904L austenitic stainless steels were compared for the first time to tune the mechan-ical properties,strengthening mechanisms,and strength-ductility synergy.For this purpose,the scanning electron microscopy(SEM),electron backscattered diffraction(EBSD),X-ray diffraction(XRD),tensile testing,work-hardening analysis,and thermodynamics calcu-lations were used.The induced plasticity effects led to a high temperature-dependency of work-hardening behavior in the 304L and 316L stainless steels.As the deformation temperature increased,the metastable 304L stainless steel showed the sequence of TRIP,TWIP,and weakening of the induced plasticity mechanism;while the disappearance of the TWIP effect in the 316L stainless steel was also observed.However,the solid-solution strengthening in the 904L superaustenitic stainless steel maintained the tensile properties over a wide temper-ature range,surpassing the performance of 304L and 316L stainless steels.In this regard,the dependency of the total elongation on the de-formation temperature was less pronounced for the 904L alloy due to the absence of additional plasticity mechanisms.These results re-vealed the importance of solid-solution strengthening and the associated high friction stress for superior mechanical behavior over a wide temperature range. 展开更多
关键词 austenitic stainless steels mechanical behavior stacking fault energy METASTABILITY mechanical twinning
下载PDF
Bulging Distortion of Austenitic Stainless Steel Sheet on the Partially Penetrated Side of Non-Penetration Lap Laser Welding Joint
6
作者 Chengwu Yao Enze Liu +1 位作者 Jiaming Ni Binying Nie 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期286-295,共10页
Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded aust... Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded austenitic stainless steel parts is limited owing to the micro bulging distortion that occurs on the back surface of the partial penetration side.In this paper,non-penetration lap laser welding experiments,were conducted on galvanized and SUS304 austenitic stainless steel plates using a fiber laser,to investigate the mechanism of bulging distortion.A comparative experiment of DC01 galvanized steel-Q235 carbon steel lap laser welding was carried out,and the deflection and distortion profile of partially penetrated side of the sheets were measured using a noncontact laser interferometer.In addition,the cold-rolled SUS304 was subjected to heat holding at different temperatures and water quenching after bending to characterize its microstructure under tensile and compressive stress.The results show that,during the heating stage of the thermal cycle of laser lap welding,the partial penetration side of the SUS304 steel sheet generates compressive stress,which extrudes the material in the heat-affected zone to the outside of the back of the SUS304 steel sheet,thereby forming a bulge.The findings of these experiments can be of great value for controlling the distortion of the partial penetrated side of austenitic stainless steel sheet during laser non-penetration lap welding. 展开更多
关键词 Non-penetration lap laser welding Bulging distortion austenitic stainless steel Compressive stress Tension stress
下载PDF
Prediction of Hot Deformation Behavior of 7Mo Super Austenitic Stainless Steel Based on Back Propagation Neural Network
7
作者 WANG Fan WANG Xitao +1 位作者 XU Shiguang HE Jinshan 《材料导报》 EI CAS CSCD 北大核心 2024年第17期165-171,共7页
The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformati... The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformation behaviors of the steel,back propagation-artificial neural network(BP-ANN)with 16×8×8 hidden layer neurons was proposed.The predictability of the ANN model is evaluated according to the distribution of mean absolute error(MAE)and relative error.The relative error of 85%data for the BP-ANN model is among±5%while only 42.5%data predicted by the Arrhenius constitutive equation is in this range.Especially,at high strain rate and low temperature,the MAE of the ANN model is 2.49%,which has decreases for 18.78%,compared with conventional Arrhenius constitutive equation. 展开更多
关键词 7Mo super austenitic stainless steel hot deformation behavior flow stress BP-ANN Arrhenius constitutive equation
下载PDF
THRESHOLD STRESS INTENSITIES FOR HYDROGEN-INDUCED DELAYED FAILURE OF WELD METAL OF AUSTENITIC STAINLESS STEEL
8
作者 潘川 李正邦 +3 位作者 田志凌 梁东图 褚武扬 乔利杰 《Transactions of Tianjin University》 EI CAS 2001年第3期147-152,共6页
It was found that hydrogen induced delayed failure could occur in 308L and 347L weld metals,and the threshold stress intensities of 308L and 347L welds were lower than that of 304L austenitic stainless steel.When dyn... It was found that hydrogen induced delayed failure could occur in 308L and 347L weld metals,and the threshold stress intensities of 308L and 347L welds were lower than that of 304L austenitic stainless steel.When dynamically charged under load on a single edge notched specimen,the threshold stress intensities of 308L,347L and 304L decrease with the increase in the diffusible hydrogen content C 0 and the experimental results are as follows:K ⅠH =85.2-10.7 ln C 0 (308L),K ⅠH =76.1-9.3 ln C 0 (347L),K ⅠH =91.7-10.1 ln C 0 (304L).The morphology of the hydrogen induced delayed fracture in the three materials are correlated with the K Ⅰ and C 0 values. 展开更多
关键词 austenitic stainless steel weld metal hydrogen induced delayed failure
下载PDF
Antibacterial Properties of an Austenitic Antibacterial Stainless Steel and Its Security for Human Body 被引量:13
9
作者 Ke YANG Manqi LV 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第3期333-336,共4页
An austenitic antibacterial stainless steel is reported in this paper. The very fine and dispersive ε-Cu precipitations in the matrix of the antibacterial steel after the antibacterial treatment endow the steel with ... An austenitic antibacterial stainless steel is reported in this paper. The very fine and dispersive ε-Cu precipitations in the matrix of the antibacterial steel after the antibacterial treatment endow the steel with antibacterial function. The antibacterial function is strong, long-term and broad-spectrum, and can be maintained even after repeated wear and long time dipping in water. The steel is safe for human body and could be used widely in daily application. 展开更多
关键词 ANTIBACTERIAL austenitic steel Body security
下载PDF
Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels 被引量:16
10
作者 Hua-bing Li Zhou-hua Jiang Yan Yang Yang Cao Zu-rui Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第5期517-524,共8页
Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels (HNSS) were investigated by electrochemical and immersion testing methods in chloride solution, respectively. The chemic... Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels (HNSS) were investigated by electrochemical and immersion testing methods in chloride solution, respectively. The chemical constitution and composition in the depth of passive films formed on HNSS were analyzed by X-ray photoelectron spectrum (XPS). HNSS has excellent pitting and crevice corrosion resistance compared to 316L stainless steel. With increasing the nitrogen content in steels, pitting potentials and critical pitting temperature (CPT) increase, and the maximum, average pit depths and average weight loss decrease. The CPT of HNSS is correlated with the alloying element content through the measure of alloying for resistance to corrosion (MARC). The MARC can be expressed as an equation of CPT=2.55MARC-29. XPS results show that HNSS exhibiting excellent corrosion resistance is attributed to the enrichment of nitrogen on the surface of passive films, which forms ammonium ions increasing the local pH value and facilitating repassivation, and the synergistic effects of molybdenum and nitrogen. 展开更多
关键词 high nitrogen austenitic stainless steel pitting corrosion crevice corrosion NITROGEN critical pitting temperature syner-gistic effect
下载PDF
High Nitrogen Austenitic Stainless Steels Manufactured by Nitrogen Gas Alloying and Adding Nitrided Ferroalloys 被引量:15
11
作者 LI Hua-bing JIANG Zhou-hua SHEN Ming-hui YOU Xiang-mi 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第3期63-68,共6页
A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas... A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas bubbling in Fe-Cr-Mn-Mo series alloys was carried out in MoSi2 resistance furnace and air induction furnace under normal atmospheric conditions. The results showed that nitrogen alloying could be accelerated by increasing nitrogen gas flow rate, prolonging residence time of bubbles, increasing gas/molten steel interfaces, and decreasing the sulphur and oxygen contents in molten steel. Nitrogen content of 0.69% in 18Crl8Mn was obtained using air induction furnace by bubbling of nitrogen gas from porous plug. In addition, the nickel-free, high nitrogen austenitic stainless steels with sound and compact macrostructure had been produced in the laboratory using vacuum induction furnace and electroslag remelting furnace under nitrogen atmosphere by the addition of nitrided alloy with the maximum nitrogen content of 0.81%. Pores were observed in the ingots obtained by melting and casting in vacuum induction furnace with the addition of nitrided ferroalloys and under nitrogen atmosphere. After electroslag remelting of the cast ingots, they were all sound and were free of pores. The yield of nitrogen increased with the decrease of melting rate in the ESR process. Due to electroslag remelting under nitrogen atmosphere and the consequential addition of aluminum as deoxidizer to the slag, the loss of manganese decreased obviously. There existed mainly irregular Al2O3 inclusions and MnS inclusions in ESR ingots, and the size of most of the inclusions was less than 5 um. After homogenization of the hot rolled plate at 1 150℃ × 1 h followed by water quenching, the microstructure consisted of homogeneous austenite. 展开更多
关键词 nitrogen gas alloying nitrided ferroalloy high nitrogen austenitic stainless steel vacuum induction melting electroslag remelting
下载PDF
Structure Evolution and Solidification Behavior of Austenitic Stainless Steel in Pulsed Magnetic Field 被引量:12
12
作者 LI Qiu-shu LI Hai-bin ZHAI Qi-jie 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2006年第5期69-72,共4页
To understand the solidification behavior of austenitic stainless steel in pulsed magnetic field, the solidification process is investigated by means of the self-made high voltage pulse power source and the solidifica... To understand the solidification behavior of austenitic stainless steel in pulsed magnetic field, the solidification process is investigated by means of the self-made high voltage pulse power source and the solidification tester. The results show that the solidification structure of austenitic stainless steel can be remarkably refined in pulsed magnetic field, yet the grains become coarse again when the magnetic intensity is exceedingly large, indicating that an optimal intensity range existed for structure refinement. The solidification temperature can be enhanced with an increase in the magnetic intensity. The solidification time is shortened obviously, but the shortening degree is reduced with the increase of the magnetic intensity. 展开更多
关键词 pulsed magnetic field austenitic stainless steel solidification structure solidification behavior
下载PDF
Fabrication of high nitrogen austenitic stainless steels with excellent mechanical and pitting corrosion properties 被引量:11
13
作者 Hua-bing Li Zhou-hua Jiang Yang Cao Zu-rui Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第4期387-392,共6页
A series of high nitrogen austenitic stainless steels were successfully developed with a pressurized electroslag remelting furnace. Nitride additives and deoxidizer were packed into the stainless steel pipes, and then... A series of high nitrogen austenitic stainless steels were successfully developed with a pressurized electroslag remelting furnace. Nitride additives and deoxidizer were packed into the stainless steel pipes, and then the stainless steel pipes were welded on the surface of an electrode with low nitrogen content to prepare a compound electrode. Using Si3N4 as a nitrogen alloying source, the silicon contents in the ingots were prone to be out of the specification range, the electric current fluctuated greatly and the surface qualities of the ingots were poor. The surface qualities of the ingots were improved with FeCrN as a nitrogen alloying source. The sound and compact macrostructure ingot with the maximum nitrogen content of 1.21wt% can be obtained. The 18Cr18Mn2Mo0.9N high nitrogen austenitic stainless steel exhibits high strength and good ductility at room temperature. The steel shows typical ductile-brittle transition behavior and excellent pitting corrosion resistance properties. 展开更多
关键词 high nitrogen austenitic stainless steels electroslag remelting nitrogen alloying ductile-brittle transition pitting corrosion resistance
下载PDF
Hot compression deformation behavior of AISI 321 austenitic stainless steel 被引量:7
14
作者 Mehdi Haj Hojjatollah Mansouri +2 位作者 Reza Vafaei Golam Reza Ebrahimi Ali Kanani 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第6期529-534,共6页
The hot compression behavior of AISI 321 ll00~C and the strain rates of 0.01-1 s-1 using a Baehr austenitic stainless steel was studied at the temperatures of 950- DIL-805 deformation dilatometer. The hot deformation ... The hot compression behavior of AISI 321 ll00~C and the strain rates of 0.01-1 s-1 using a Baehr austenitic stainless steel was studied at the temperatures of 950- DIL-805 deformation dilatometer. The hot deformation equations and the relationship between hot deformation parameters were obtained. It is found that strain rate and deformation temperature significantly influence the flow stress behavior of the steel. The work hardening rate and the peak value of flow stress increase with the decrease of deformation temperature and the increase of strain rate. In addition, the activation energy of deformation (Q) is calculated as 433.343 kJ/mol. The microstructural evolution during deformation indicates that, at the temperature of 950~C and the strain rate of 0.01 s-1, small circle-like precipitates form along grain boundaries; but at the temperatures above 950~C, the dissolution of such precipitates occurs. Energy-dispersive X-ray analyses indicate that the precipitates are complex carbides of Cr, Fe, Mn, Ni, and Ti. 展开更多
关键词 austenitic stainless steel DEFORMATION constitutive equations microstructural evolution activation energy
下载PDF
Effects of carbon content on high-temperature mechanical and thermal fatigue properties of high-boron austenitic steels 被引量:5
15
作者 Xiang Chen Zhi-sheng Wang +2 位作者 Yan-xiang Li Hua-wei Zhang Yuan Liu 《China Foundry》 SCIE 2016年第1期1-8,共8页
High-temperature mechanical properties of high-boron austenitic steels (HBASs) were studied at 850 ℃ using a dynamic thermal-mechanical simulation testing machine. In addition, the thermal fatigue properties of the... High-temperature mechanical properties of high-boron austenitic steels (HBASs) were studied at 850 ℃ using a dynamic thermal-mechanical simulation testing machine. In addition, the thermal fatigue properties of the alloys were investigated using the self-restraint Uddeholm thermal fatigue test, during which the alloy specimens were cycled between room temperature and 800℃. Stereomicroscopy and scanning electron microscopy were used to study the surface cracks and cross-sectional microstructure of the alloy specimens after the thermal fatigue tests. The effects of carbon content on the mechanical properties at room temperature and high-temperature as well as thermal fatigue properties of the HBASs were also studied. The experimental results show that increasing carbon content induces changes in the microstructure and mechanical properties of the HBASs. The boride phase within the HBAS matrix exhibits a round and smooth morphology, and they are distributed in a discrete manner. The hardness of the alloys increases from 239 (0.19wt.% C) to 302 (0.29wt.% C) and 312 HV (0.37wt.% C); the tensile yield strength at 850 ℃ increases from 165.1 to 190.3 and 197.1 MPa; and the compressive yield strength increases from 166.1 to 167.9 and 184.4 MPa. The results of the thermal fatigue tests (performed for 300 cycles from room temperature to 800 ℃) indicate that the degree of thermal fatigue of the HBAS with 0.29wt.% C (rating of 2-3) is superior to those of the alloys with 0.19wt.% (rating of 4-5) and 0.37wt.% (rating of 3-4) carbon. The main cause of this difference is the ready precipitation of M23(C,B)6- type borocarbides in the alloys with high carbon content during thermal fatigue testing. The precipitation and aggregation of borocarbide particles at the grain boundaries result in the deterioration of the thermal fatigue properties of the alloys. 展开更多
关键词 steel austenitE BORIDE high-boron austenitic steel(HBAS) thermal fatigue property
下载PDF
Load Bearing Capacity and Safety Analysis for Strain-hardening Austenitic Stainless Steel Pressure Vessels 被引量:7
16
作者 CHEN Gang DENG Yangchun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第2期179-186,共8页
By increasing the yield strengths of austenitic stainless steels for pressure vessels with strain hardening techniques,the elastic load bearing capacity of austenitic stainless steel pressure vessels can be significan... By increasing the yield strengths of austenitic stainless steels for pressure vessels with strain hardening techniques,the elastic load bearing capacity of austenitic stainless steel pressure vessels can be significantly improved.Two kinds of strain hardening methods are often used for austenitic stainless steel pressure vessels:Avesta model for ambient temperature applications and Ardeform model for cryogenic temperature applications.Both methods are obtained from conventional design rules based on the linear elastic theory,and only consider the hardening effect from materials.Consequently this limits the applications of strain hardening techniques for austenitic stainless steel pressure vessels because of safety concerns.This paper investigates the effect of strain hardening on the load bearing capacity of austenitic stainless steel pressure vessels under large deformation,based on the elastic-plastic theory.Firstly,to understand the effect of strain hardening on material behavior,the plastic instability loads of a round tensile bar specimen are derived under two different loading paths and validated by experiments.Secondly,to investigate the effect of strain hardening on pressure vessels strength, the plastic instability pressure under strain hardening is derived and further validated by finite element simulations.Further,the safety margin of pressure vessels after strain hardening is analyzed by comparing the safety factor values calculated from bursting tests,finite element analyses,and standards.The researching results show that the load bearing capacity of pressure vessels at ambient temperature is independent of the loading history when the effects of both material strain hardening and structural deformation are considered.Finite element simulations and bursting tests results show that the minimum safety factor of austenitic stainless steel pressure vessels with 5% strain hardening is close to the recommended value for common pressure vessels specified in the European pressure vessel standard.The proposed study also shows that in the strain hardening design of austenitic stainless steel pressure vessels,the calculation for plastic instability pressure could use theoretical formula or finite element analyses based on geometrical dimensions and material property parameters before strain hardening,but a 5%strain should be employed as a design limit.The proposed research can be used for the strain hardening design of austenitic stainless steel pressure vessels safely. 展开更多
关键词 pressure vessel austenitic stainless steel strain hardening load bearing capacity safety margin
下载PDF
PRECIPITATION BEHAVIOR OF M_(2)N IN A HIGH-NITROGEN AUSTENITIC STAINLESS STEEL DURING ISOTHERMAL AGING 被引量:6
17
作者 F. Shi L.J. Wang W.F. Cui C.M. Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2007年第2期95-101,共7页
The precipitation behavior of M2N and the microstructural evolution in a Cr-Mn austenitic stainless steel with a high nitrogen content of 0.43mass% during isothermal aging has been investigated using optical microsco... The precipitation behavior of M2N and the microstructural evolution in a Cr-Mn austenitic stainless steel with a high nitrogen content of 0.43mass% during isothermal aging has been investigated using optical microscopy ( OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The aging treatments have led to the decomposition of nitrogen supersaturated austenitic matrix through discontinuous cellular precipitation. The precipitated cells comprise alternate lamellae of M2N precipitate and austenitic matrix. This kind of precipitate morphology is similar to that of pearlite. However, owing to the non-eutectoidic mechanism of the reaction, the growth characteristic of the cellular precipitates is different from that of pearlite in Fe-C binary alloys. M2N precipitate in the cell possesses a hexagonal crystal structure with the parameters a = 0.4752nm and c = 0.4429nm, and the orientation relationship between the M2V precipitates and austenite determined from the SADP is [01^-10]M2N//[101]γ, [2^-1^-10]M2N//[010]γ. 展开更多
关键词 austenitic stainless steel high nitrogen microstructureisothermal aging PRECIPITATION
下载PDF
Microstructural evolution and mechanical properties of friction stir-welded C71000 copper–nickel alloy and 304 austenitic stainless steel 被引量:6
18
作者 Hamed Jamshidi Aval 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第11期1294-1303,共10页
Dissimilar joints comprised of copper–nickel and steel alloys are a challenge for manufacturers in modern industries, as these metals are not thermomechanically or chemically well matched. The present study investiga... Dissimilar joints comprised of copper–nickel and steel alloys are a challenge for manufacturers in modern industries, as these metals are not thermomechanically or chemically well matched. The present study investigated the effects of tool rotational speed and linear speed on the microstructure and mechanical properties of friction stir-welded C71000 copper–nickel and 340 stainless steel alloys using a tungsten carbide tool with a cylindrical pin. The results indicated that a rotational-to-linear speed ratio of 12.5 r/mm did not cause any macro defects, whereas some tunneling defects and longitudinal cracks were found at other ratios that were lower and higher. Furthermore, chromium carbide was formed on the grain boundaries of the 304 stainless steel near the shoulder zone and inside the joint zone, directing carbon and chromium penetration toward the grain boundaries. Tensile strength and elongation percentages were 84% and 65% of the corresponding values in the copper–nickel base metal, respectively. 展开更多
关键词 dissimilar FRICTION STIR welding copper–nickel alloy austenitic STAINLESS steel microstructure MECHANICAL properties
下载PDF
Intergranular corrosion behavior of high nitrogen austenitic stainless steel 被引量:6
19
作者 Hua-bing Li Zhou-hua Jiang Zu-rui Zhang Yang Cao Yan Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第6期654-660,共7页
The intergranular corrosion (IGC) behavior of high nitrogen austenitic stainless steel (HNSS) sensitization treated at 650-950℃ was investigated by the double loop electrochemical potentiodynamic reactivation (D... The intergranular corrosion (IGC) behavior of high nitrogen austenitic stainless steel (HNSS) sensitization treated at 650-950℃ was investigated by the double loop electrochemical potentiodynamic reactivation (DL-EPR) method. The effects of the electrolytes, scan rate, sensitizing temperature on the susceptibility to IGC of HNSS were examined. The results show that the addi-tion of NaCl is an effective way to improve the formation of the cracking of a passive film in chromium-depleted zones during the reactivation scan. Decreasing the scan rate exhibits an obvious effect on the breakdown of the passive film. A solution with 2 mol/L H2SO4+1 mol/L NaCl+0.01 mol/L KSCN is suitable to check the susceptibility to IGC of HNSS at a sensitizing temperature of 650-950℃ at a suitable scan rate of 1.667 mV/s. Chromium depletion of HNSS is attributed to the precipitation of Cr2N which results in the susceptibility to IGC. The synergistic effect of Mo and N is suggested to play an important role in stabilizing the passive film to prevent the attack of IGC. 展开更多
关键词 intergranular corrosion high nitrogen austenitic stainless steel SENSITIZATION passive film chromium depletion
下载PDF
Coarsening behavior of MX carbonitrides in type 347H heat-resistant austenitic steel during thermal aging 被引量:4
20
作者 Ying-hui Zhou Chen-xi Liu +2 位作者 Yong-chang Liu Qian-ying Guo Hui-jun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第3期283-293,共11页
In this work, the growth kinetics of MX (M - metal, X - C/N) nanoprecipitates in type 347H austenitic steel was systematically studied. To investigate the coarsening behavior and the growth mechanism of MX carbonitr... In this work, the growth kinetics of MX (M - metal, X - C/N) nanoprecipitates in type 347H austenitic steel was systematically studied. To investigate the coarsening behavior and the growth mechanism of MX carbonitrides during long-term aging, experiments were performed at 700, 800, 850, and 900℃ for different periods (1, 24, 70, and 100 h). The precipitation behavior of carbonitrides in specimens subjected to various aging conditions was explored using carbon replicas and transmission electron microscopy (TEM) observations. The corresponding sizes ofMX carbonitrides were measured. The results demonstrates that MX carbonitrides precipitate in type 347H austenitic steel as Nb(C,N). The coarsening rate constant is time-independent; however, an increase in aging temperature results in an increase in coarsening rate of Nb(C,N). The coarsening process was analyzed according to the calculated diffusion activation energy of Nb(C,N). When the aging temperature was 800-900℃, the mean activation energy was 294 kJ·mol -1, and the coarsening behavior was controlled primarily by the diffusion of Nb atoms. 展开更多
关键词 austenitic steel heat resistance CARBONITRIDES COARSENING NANOPARTICLES DIFFUSION thermal aging
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部