The change of inclusions and microstructure of 16Mn steel treated by Ce were observed,and the effect of austenitizing temperature on the microstructure was also examined.The results show that the inclusions are transf...The change of inclusions and microstructure of 16Mn steel treated by Ce were observed,and the effect of austenitizing temperature on the microstructure was also examined.The results show that the inclusions are transformed from Si-Mn-Al composite oxide and MnS into AlCeO3,Ce2O2S,and MnS composite inclusions after being treated by Ce.Plenty of intragranular ferrites are formed in 16Mn steel containing~0.017wt% Ce.A large amount of intragranular acicular ferrites are formed after being austenitized for 20min at 1473 K.The prior austenite grain size fit for the formation of intragranular acicular ferrites is about 120μm.展开更多
Microstructural evolution of GCr15 steels with different C and Cr contents during austenitizing and quenching was studied. Thermodynamic analysis of cementite dissolution was implied to obtain the critical temperature...Microstructural evolution of GCr15 steels with different C and Cr contents during austenitizing and quenching was studied. Thermodynamic analysis of cementite dissolution was implied to obtain the critical temperature. The coordination number x in Fe_xCr_(3-x)C and the volume fraction of undissolved cementite were computed according to element conservation and equilibrium phase diagram. The M_S(martensite transformation temperature) was calculated by using empirical formula. The retained austenite content was calculated with further consideration of quenching temperature. The results showed that the coordination number and the undissolved cementite content were promoted by the austenitizing temperature and carbon content of the steel. Increasing Cr element reduced the coordination number.GCr15 steels with different components had nearly the same M_S when austenitization at 830 °C to 860 °C. The interaction of C and Cr complicated the evolution of M_S and retained austenite content. The results were in good agreement with the literature, which could guide to obtain specified retained austenite and/or carbides.展开更多
By continuous quenching process, the effect of austenitizing temperature and time on the structure and hardness of bainiteductile cast iron was studied. It was found that (l) low austenitizing temperature would result...By continuous quenching process, the effect of austenitizing temperature and time on the structure and hardness of bainiteductile cast iron was studied. It was found that (l) low austenitizing temperature would result in scrap ferrite existing in matrix, whichreduces the macro-hardness of bainite ductile cast iron; (2) high austenitizing temperature would make carbide decomposed, which alsoinduces the macro-hardness of bainite cast iron, and (3) austenitizing time has little effect on the structure of bainite ductile cast iron, butas it increases, the macro-hardness ofbainite ductile cast iron and micro-hardness of bainite increases. To the ductile cast iron, as a result,the suitable austenitizing temperature and time are recommended as 880 and 120 min respectively.展开更多
The effect of austenitizing temperature on segregation of impurities along grain boundaries in steel 4330M has been examined by AES.The impurity segregation was computed quantitatively.Results showed that the quantity...The effect of austenitizing temperature on segregation of impurities along grain boundaries in steel 4330M has been examined by AES.The impurity segregation was computed quantitatively.Results showed that the quantity of impurity segregation changed with the austenitizing temperature.The limitation of the McLean′s expression for equilibrium segrega- tion was discussed.展开更多
This investigation studies the impact strength, tensile strength, hardness, and wear behavior of thin wall austempered and intercritically austempered ductile iron samples with a chemical composition of 3.37% C, 2.7% ...This investigation studies the impact strength, tensile strength, hardness, and wear behavior of thin wall austempered and intercritically austempered ductile iron samples with a chemical composition of 3.37% C, 2.7% Si, 0.30% Mn, 0.01% S, and 0.01% P. The austempered samples were austenitized at 900?C for 1 h and rapidly quenched in a salt bath furnace at 375?C for 1 h. The intercritically austempered samples were sub-austenitized at 810?C for 1 h and rapidly quenched in a salt bath furnace at 375?C for 1 h. The properties of the austempered and intercritically austempered thin wall plates of 5, 10, and 15 mm thickness were evaluated and compared to the as-cast samples. Austempering process affects greatly the tensile properties of all cast thicknesses where ultimate strength reached 1004 MPa for 5-mm thickness. Optimum impact toughness of 40 J was obtained for the austempered samples of 10- and 15-mm thicknesses. The intercritically austempered samples showed properties between the austempered and as-cast samples. Maximum wear resistance was also reported for the austempered samples due to containing retained austenite in the structure which in turn transformed into martensite that increases well the wear resistance. Maximum ultimate strength (1056) MPa and hardness (396 HV) were obtained for 5 mm ADI sample. Maximum impact toughness (43 J) was achieved for 15 mm IADI sample due to existing of pro-eutectoid ferrite in matrix. For all As-cast, ADI and IADI irons, wear resistance decreased with increasing sample thickness. Minimum wear rate (2.22 × 10?6 g/s) was reported for 5-mm ADI sample and maximum one (15.8 × 10?6 g/s) was registered for 15-mm as-cast DI sample, at a sliding speed of 2 m/s.展开更多
Three types of steels were designed on the basis of GX40CrNiSi25-12 austenitic heat resistant steel by adding different Mn contents(2wt.%,6wt.%,and 12wt.%).Thermodynamic calculation,microstructure characterization and...Three types of steels were designed on the basis of GX40CrNiSi25-12 austenitic heat resistant steel by adding different Mn contents(2wt.%,6wt.%,and 12wt.%).Thermodynamic calculation,microstructure characterization and mechanical property tests were conducted to investigate the effect of Mn addition on the microstructure and mechanical properties of the austenitic heat resistant steel.Results show that the matrix structure in all the three types of steels at room temperature is completely austenite.Carbides NbC and M_(23)C_(6)precipitate at grain boundaries of austenite matrix.With the increase of Mn content,the number of carbides increases and their distribution becomes more uniform.With the Mn content increases from 1.99%to 12.06%,the ultimate tensile strength,yield strength and elongation increase by 14.6%,8.0%and 46.3%,respectively.The improvement of the mechanical properties of austenitic steels can be explained by utilizing classic theories of alloy strengthening,including solid solution strengthening,precipitation strengthening,and grain refinement.The increase in alloy strength can be attributed to solid solution strengthening and precipitation strengthening caused by the addition of Mn.The improvement of the plasticity of austenitic steels can be explained from two aspects:grain refinement and homogenization of precipitated phases.展开更多
With the growing interest in utilizing Mg and austenitic stainless steel(ASS)in the automotive sector,joining them together in three-sheet configuration is inevitable.However,achieving this task presents considerable ...With the growing interest in utilizing Mg and austenitic stainless steel(ASS)in the automotive sector,joining them together in three-sheet configuration is inevitable.However,achieving this task presents considerable challenges due to the large differences in their physical,metallurgical and mechanical properties.To overcome these challenges,the feasibility of using weld-bonding to join Mg alloy/ASS/ASS was investigated.The nugget formation,interface characteristics,microstructure and mechanical properties of the joints were investigated.The results show that the connection between the Mg alloy and upper ASS was achieved through the combined effect of the cured adhesive and weld-brazing in the weld zone.On the other hand,a metallurgical bond was formed at the ASS/ASS interface.The Mg nugget microstructure exhibited fine columar grains composed predominantly of primaryα-Mg grains along with a eutectic mixture ofα-Mg andβ-Mg17Al12.The nugget formed at the ASS/ASS interface consisted largely of columnar grains of austenite,with some equiaxed dendritic grains formed at the centerline of the joint.The weld-bonded joints exhibited an average peak load and energy absorption of about 8.5 kN and 17 J,respectively(the conventional RSW joints failed with minimal or no load application).The failure mode of the joints changed with increasing welding current from interfacial failure via the Mg nugget/upper ASS interface to partial interfacial failure(part of the Mg nugget was pulled out of the Mg sheet).Both failure modes were accompanied by cohesive failure in the adhesive zone.展开更多
The evolution of dislocation loops in austenitic steels irradiated with Fe^(+)is investigated using cluster dynamics(CD)simulations by developing a CD model.The CD predictions are compared with experimental results in...The evolution of dislocation loops in austenitic steels irradiated with Fe^(+)is investigated using cluster dynamics(CD)simulations by developing a CD model.The CD predictions are compared with experimental results in the literature.The number density and average diameter of the dislocation loops obtained from the CD simulations are in good agreement with the experimental data obtained from transmission electron microscopy(TEM)observations of Fe~+-irradiated Solution Annealed 304,Cold Worked 316,and HR3 austenitic steels in the literature.The CD simulation results demonstrate that the diffusion of in-cascade interstitial clusters plays a major role in the dislocation loop density and dislocation loop growth;in particular,for the HR3 austenitic steel,the CD model has verified the effect of temperature on the density and size of the dislocation loops.展开更多
The effects of deformation temperature on the transformation-induced plasticity(TRIP)-aided 304L,twinning-induced plasti-city(TWIP)-assisted 316L,and highly alloyed stable 904L austenitic stainless steels were compare...The effects of deformation temperature on the transformation-induced plasticity(TRIP)-aided 304L,twinning-induced plasti-city(TWIP)-assisted 316L,and highly alloyed stable 904L austenitic stainless steels were compared for the first time to tune the mechan-ical properties,strengthening mechanisms,and strength-ductility synergy.For this purpose,the scanning electron microscopy(SEM),electron backscattered diffraction(EBSD),X-ray diffraction(XRD),tensile testing,work-hardening analysis,and thermodynamics calcu-lations were used.The induced plasticity effects led to a high temperature-dependency of work-hardening behavior in the 304L and 316L stainless steels.As the deformation temperature increased,the metastable 304L stainless steel showed the sequence of TRIP,TWIP,and weakening of the induced plasticity mechanism;while the disappearance of the TWIP effect in the 316L stainless steel was also observed.However,the solid-solution strengthening in the 904L superaustenitic stainless steel maintained the tensile properties over a wide temper-ature range,surpassing the performance of 304L and 316L stainless steels.In this regard,the dependency of the total elongation on the de-formation temperature was less pronounced for the 904L alloy due to the absence of additional plasticity mechanisms.These results re-vealed the importance of solid-solution strengthening and the associated high friction stress for superior mechanical behavior over a wide temperature range.展开更多
Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded aust...Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded austenitic stainless steel parts is limited owing to the micro bulging distortion that occurs on the back surface of the partial penetration side.In this paper,non-penetration lap laser welding experiments,were conducted on galvanized and SUS304 austenitic stainless steel plates using a fiber laser,to investigate the mechanism of bulging distortion.A comparative experiment of DC01 galvanized steel-Q235 carbon steel lap laser welding was carried out,and the deflection and distortion profile of partially penetrated side of the sheets were measured using a noncontact laser interferometer.In addition,the cold-rolled SUS304 was subjected to heat holding at different temperatures and water quenching after bending to characterize its microstructure under tensile and compressive stress.The results show that,during the heating stage of the thermal cycle of laser lap welding,the partial penetration side of the SUS304 steel sheet generates compressive stress,which extrudes the material in the heat-affected zone to the outside of the back of the SUS304 steel sheet,thereby forming a bulge.The findings of these experiments can be of great value for controlling the distortion of the partial penetrated side of austenitic stainless steel sheet during laser non-penetration lap welding.展开更多
The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformati...The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformation behaviors of the steel,back propagation-artificial neural network(BP-ANN)with 16×8×8 hidden layer neurons was proposed.The predictability of the ANN model is evaluated according to the distribution of mean absolute error(MAE)and relative error.The relative error of 85%data for the BP-ANN model is among±5%while only 42.5%data predicted by the Arrhenius constitutive equation is in this range.Especially,at high strain rate and low temperature,the MAE of the ANN model is 2.49%,which has decreases for 18.78%,compared with conventional Arrhenius constitutive equation.展开更多
Understandings of the effect of hot deformation parameters close to the practical production line on grain refinement are crucial for enhancing both the strength and toughness of future rail steels.In this work,the au...Understandings of the effect of hot deformation parameters close to the practical production line on grain refinement are crucial for enhancing both the strength and toughness of future rail steels.In this work,the austenite dynamic recrystallization(DRX)behaviors of a eutectoid pearlite rail steel were studied using a thermo-mechanical simulator with hot deformation parameters frequently employed in rail production lines.The single-pass hot deformation results reveal that the prior austenite grain sizes(PAGSs)for samples with different deformation reductions decrease initially with an increase in deformation temperature.However,once the deformation temperature is beyond a certain threshold,the PAGSs start to increase.It can be attributed to the rise in DRX volume fraction and the increase of DRX grain with deformation temperature,respectively.Three-pass hot deformation results show that the accumulated strain generated in the first and second deformation passes can increase the extent of DRX.In the case of complete DRX,PAGS is predominantly determined by the deformation temperature of the final pass.It suggests a strategic approach during industrial production where part of the deformation reduction in low temperature range can be shifted to the medium temperature range to release rolling mill loads.展开更多
The equation which reflects the relationship between the retained austenite and strain has been proposed and clear TRIP can be obtained while the S value (An index of retained austenite stability) is less than 6.5 for...The equation which reflects the relationship between the retained austenite and strain has been proposed and clear TRIP can be obtained while the S value (An index of retained austenite stability) is less than 6.5 for Silicon-Manganese TRIP steel展开更多
It was found that hydrogen induced delayed failure could occur in 308L and 347L weld metals,and the threshold stress intensities of 308L and 347L welds were lower than that of 304L austenitic stainless steel.When dyn...It was found that hydrogen induced delayed failure could occur in 308L and 347L weld metals,and the threshold stress intensities of 308L and 347L welds were lower than that of 304L austenitic stainless steel.When dynamically charged under load on a single edge notched specimen,the threshold stress intensities of 308L,347L and 304L decrease with the increase in the diffusible hydrogen content C 0 and the experimental results are as follows:K ⅠH =85.2-10.7 ln C 0 (308L),K ⅠH =76.1-9.3 ln C 0 (347L),K ⅠH =91.7-10.1 ln C 0 (304L).The morphology of the hydrogen induced delayed fracture in the three materials are correlated with the K Ⅰ and C 0 values.展开更多
Effects of silicon (Si) content on the stability of retained austenite and temper embrittlement of ultrahigh strength steels were investigated using X-ray diffraction (XRD),transmission electron microscopy (TEM)...Effects of silicon (Si) content on the stability of retained austenite and temper embrittlement of ultrahigh strength steels were investigated using X-ray diffraction (XRD),transmission electron microscopy (TEM),and other experimental methods.The results show that Si can suppress temper embrittlement,improve temper resistance,and hinder the decomposition of retained austenite.Reversed austenite appears gradually with the increase of Si content during tempering.Si has a significant effect on enhancing carbon (C) partitioning and improving the stability of retained austenite.Si and C atoms are mutually exclusive in lath bainite,while they attract each other in austenite.ε-carbides are found in 1.8wt% Si steel tempered at 250℃,and they get coarsened obviously when tempered at 400℃,leading to temper embrittlement.Not ε-carbides but acicular or lath carbides lead to temper embrittlement in 0.4wt% Si steel,which can be inferred as cementites and composite compounds.Temper embrittlement is closely related to the decomposition of retained austenite and the formation of reversed austenite.展开更多
Using thermomechanical simulation experiment, the kinetics of the isothermal transformation of austenite to ferrite in two HSLA low-carbon steels containing different amounts of niobium was investigated under the cond...Using thermomechanical simulation experiment, the kinetics of the isothermal transformation of austenite to ferrite in two HSLA low-carbon steels containing different amounts of niobium was investigated under the conditions of both deformation and undeformation. The results of optical microstructure observation and quantitative metallography analysis showed that the kinetics of the isothermal transformation of austenite to ferrite in lower niobium steel with and without deformation suggests a stage mechanism, wherein there exists a linear relationship between the logarithms of holding time and ferrite volume fraction according to Avrami equation, whereas the isothermal transformation of austenite to ferrite in high niobium steel proceeds via a two stage mechanism according to micrographs, wherein, the nucleation rate of ferrite in the initial stage of transformation is low, and in the second stage, the rate of transformation is high and the transformation of residual austenite to ferrite is rapidly complete. Using carbon extraction replica TEM, niobium carbide precipitation for different holding time was investigated and the results suggested that NbC precipitation and the presence of solute niobium would influence the transformation of austenite to ferrite. The mechanism of the effect of niobium on the isothermal transformation was discussed.展开更多
The systematic chemical compositions including common C, Si, Mn, Al, and micro-alloying elements of Ti and Nb were designed for high volume fraction of retained austenite as much as possible. The thermo-cycle experime...The systematic chemical compositions including common C, Si, Mn, Al, and micro-alloying elements of Ti and Nb were designed for high volume fraction of retained austenite as much as possible. The thermo-cycle experiments were conducted by using Gleeble 2000 thermo-dynamic test machine for finding the appropriate composition. The experimental results showed that chemical composition had a significant effect on retained austenite, and the appropriate compositions were determined for commercial production of TRIP steels.展开更多
An austenitic antibacterial stainless steel is reported in this paper. The very fine and dispersive ε-Cu precipitations in the matrix of the antibacterial steel after the antibacterial treatment endow the steel with ...An austenitic antibacterial stainless steel is reported in this paper. The very fine and dispersive ε-Cu precipitations in the matrix of the antibacterial steel after the antibacterial treatment endow the steel with antibacterial function. The antibacterial function is strong, long-term and broad-spectrum, and can be maintained even after repeated wear and long time dipping in water. The steel is safe for human body and could be used widely in daily application.展开更多
The influence of prior austenite deformed at different temperature on the subsequent continuous cooling bainitic transformation has been investigated in an C-Ma-Cr-Ni-Mo plastic die steel. The results show that the pr...The influence of prior austenite deformed at different temperature on the subsequent continuous cooling bainitic transformation has been investigated in an C-Ma-Cr-Ni-Mo plastic die steel. The results show that the prior deformation in low temperature region of austenite retards significantly the bainitic transformation. For the same continuous cooling schedule, as austenite deformed at lower temperature, the quantity of the classical sheaf-like bainite becomes less. The present results show that severe deformation leads to mechanical stabilization of austenite and causes the difficulty of bainitic ferrite propagation into the austenite.展开更多
The effect of compressive deformation of austenite on continuous cooling transformation microstructures for 22CrSH gear steel has been investigated using a Gleeble 1500 thermal simulator. The experimental results show...The effect of compressive deformation of austenite on continuous cooling transformation microstructures for 22CrSH gear steel has been investigated using a Gleeble 1500 thermal simulator. The experimental results show that the deformation of austenite promotes the formation of proeutectoid ferrite and pearlite, and leads to the increase of critical cooling rate of proeutectoid ferrite plus pearlite microstructure. The grain boundary allotriomorphic ferrite occupies the austenite grain surfaces when the prior deformation takes place or the cooling rate is decreased, which causes a transition from bainite to acicular ferrite. The deformation enhances the stability of transformation from austenite to acicular ferrite, which results in an increase of M/A constituent.展开更多
基金supported by the National Natural Science Foundations of China (No.50734008)the Fundamental Research Funds for the Central Universities (No.FRF-AS-11-003A)
文摘The change of inclusions and microstructure of 16Mn steel treated by Ce were observed,and the effect of austenitizing temperature on the microstructure was also examined.The results show that the inclusions are transformed from Si-Mn-Al composite oxide and MnS into AlCeO3,Ce2O2S,and MnS composite inclusions after being treated by Ce.Plenty of intragranular ferrites are formed in 16Mn steel containing~0.017wt% Ce.A large amount of intragranular acicular ferrites are formed after being austenitized for 20min at 1473 K.The prior austenite grain size fit for the formation of intragranular acicular ferrites is about 120μm.
基金Project(51575414)supported by National Natural Science Foundation of ChinaProject(IRT13087)supported by the Innovative Research Team Development Program of Ministry of Education of ChinaProject(2015AAA005)supported by the project of Important Science and Technology Innovation Program of Hubei Province,China
文摘Microstructural evolution of GCr15 steels with different C and Cr contents during austenitizing and quenching was studied. Thermodynamic analysis of cementite dissolution was implied to obtain the critical temperature. The coordination number x in Fe_xCr_(3-x)C and the volume fraction of undissolved cementite were computed according to element conservation and equilibrium phase diagram. The M_S(martensite transformation temperature) was calculated by using empirical formula. The retained austenite content was calculated with further consideration of quenching temperature. The results showed that the coordination number and the undissolved cementite content were promoted by the austenitizing temperature and carbon content of the steel. Increasing Cr element reduced the coordination number.GCr15 steels with different components had nearly the same M_S when austenitization at 830 °C to 860 °C. The interaction of C and Cr complicated the evolution of M_S and retained austenite content. The results were in good agreement with the literature, which could guide to obtain specified retained austenite and/or carbides.
文摘By continuous quenching process, the effect of austenitizing temperature and time on the structure and hardness of bainiteductile cast iron was studied. It was found that (l) low austenitizing temperature would result in scrap ferrite existing in matrix, whichreduces the macro-hardness of bainite ductile cast iron; (2) high austenitizing temperature would make carbide decomposed, which alsoinduces the macro-hardness of bainite cast iron, and (3) austenitizing time has little effect on the structure of bainite ductile cast iron, butas it increases, the macro-hardness ofbainite ductile cast iron and micro-hardness of bainite increases. To the ductile cast iron, as a result,the suitable austenitizing temperature and time are recommended as 880 and 120 min respectively.
文摘The effect of austenitizing temperature on segregation of impurities along grain boundaries in steel 4330M has been examined by AES.The impurity segregation was computed quantitatively.Results showed that the quantity of impurity segregation changed with the austenitizing temperature.The limitation of the McLean′s expression for equilibrium segrega- tion was discussed.
文摘This investigation studies the impact strength, tensile strength, hardness, and wear behavior of thin wall austempered and intercritically austempered ductile iron samples with a chemical composition of 3.37% C, 2.7% Si, 0.30% Mn, 0.01% S, and 0.01% P. The austempered samples were austenitized at 900?C for 1 h and rapidly quenched in a salt bath furnace at 375?C for 1 h. The intercritically austempered samples were sub-austenitized at 810?C for 1 h and rapidly quenched in a salt bath furnace at 375?C for 1 h. The properties of the austempered and intercritically austempered thin wall plates of 5, 10, and 15 mm thickness were evaluated and compared to the as-cast samples. Austempering process affects greatly the tensile properties of all cast thicknesses where ultimate strength reached 1004 MPa for 5-mm thickness. Optimum impact toughness of 40 J was obtained for the austempered samples of 10- and 15-mm thicknesses. The intercritically austempered samples showed properties between the austempered and as-cast samples. Maximum wear resistance was also reported for the austempered samples due to containing retained austenite in the structure which in turn transformed into martensite that increases well the wear resistance. Maximum ultimate strength (1056) MPa and hardness (396 HV) were obtained for 5 mm ADI sample. Maximum impact toughness (43 J) was achieved for 15 mm IADI sample due to existing of pro-eutectoid ferrite in matrix. For all As-cast, ADI and IADI irons, wear resistance decreased with increasing sample thickness. Minimum wear rate (2.22 × 10?6 g/s) was reported for 5-mm ADI sample and maximum one (15.8 × 10?6 g/s) was registered for 15-mm as-cast DI sample, at a sliding speed of 2 m/s.
基金supported by the National Natural Science Foundation of China(Grant No.52275370)the Key R&D Program of Hubei Province,China(Grant Nos.2022BAD100,2021BAA048)the Open Fund of Hubei Longzhong Laboratory(Grant No.2022ZZ-04).
文摘Three types of steels were designed on the basis of GX40CrNiSi25-12 austenitic heat resistant steel by adding different Mn contents(2wt.%,6wt.%,and 12wt.%).Thermodynamic calculation,microstructure characterization and mechanical property tests were conducted to investigate the effect of Mn addition on the microstructure and mechanical properties of the austenitic heat resistant steel.Results show that the matrix structure in all the three types of steels at room temperature is completely austenite.Carbides NbC and M_(23)C_(6)precipitate at grain boundaries of austenite matrix.With the increase of Mn content,the number of carbides increases and their distribution becomes more uniform.With the Mn content increases from 1.99%to 12.06%,the ultimate tensile strength,yield strength and elongation increase by 14.6%,8.0%and 46.3%,respectively.The improvement of the mechanical properties of austenitic steels can be explained by utilizing classic theories of alloy strengthening,including solid solution strengthening,precipitation strengthening,and grain refinement.The increase in alloy strength can be attributed to solid solution strengthening and precipitation strengthening caused by the addition of Mn.The improvement of the plasticity of austenitic steels can be explained from two aspects:grain refinement and homogenization of precipitated phases.
基金Supported by National Natural Science Foundation of China (Grant No.52075378)Prince Sattam Bin Abdulaziz University of Saudi Arabia (Grant No.PSAU/2024/R/1445)。
文摘With the growing interest in utilizing Mg and austenitic stainless steel(ASS)in the automotive sector,joining them together in three-sheet configuration is inevitable.However,achieving this task presents considerable challenges due to the large differences in their physical,metallurgical and mechanical properties.To overcome these challenges,the feasibility of using weld-bonding to join Mg alloy/ASS/ASS was investigated.The nugget formation,interface characteristics,microstructure and mechanical properties of the joints were investigated.The results show that the connection between the Mg alloy and upper ASS was achieved through the combined effect of the cured adhesive and weld-brazing in the weld zone.On the other hand,a metallurgical bond was formed at the ASS/ASS interface.The Mg nugget microstructure exhibited fine columar grains composed predominantly of primaryα-Mg grains along with a eutectic mixture ofα-Mg andβ-Mg17Al12.The nugget formed at the ASS/ASS interface consisted largely of columnar grains of austenite,with some equiaxed dendritic grains formed at the centerline of the joint.The weld-bonded joints exhibited an average peak load and energy absorption of about 8.5 kN and 17 J,respectively(the conventional RSW joints failed with minimal or no load application).The failure mode of the joints changed with increasing welding current from interfacial failure via the Mg nugget/upper ASS interface to partial interfacial failure(part of the Mg nugget was pulled out of the Mg sheet).Both failure modes were accompanied by cohesive failure in the adhesive zone.
基金supported by the National Natural Science Foundation of China(No.U1967212)the Fundamental Research Funds for the Central Universities(No.2021MS032)the Nuclear Materials Innovation Foundation(No.WDZC-2023-AW-0305)。
文摘The evolution of dislocation loops in austenitic steels irradiated with Fe^(+)is investigated using cluster dynamics(CD)simulations by developing a CD model.The CD predictions are compared with experimental results in the literature.The number density and average diameter of the dislocation loops obtained from the CD simulations are in good agreement with the experimental data obtained from transmission electron microscopy(TEM)observations of Fe~+-irradiated Solution Annealed 304,Cold Worked 316,and HR3 austenitic steels in the literature.The CD simulation results demonstrate that the diffusion of in-cascade interstitial clusters plays a major role in the dislocation loop density and dislocation loop growth;in particular,for the HR3 austenitic steel,the CD model has verified the effect of temperature on the density and size of the dislocation loops.
基金Saeed Sadeghpour would like to thank Jane,Aatos Erkon säätiö(JAES),and Tiina ja Antti Herlinin säätiö(TAHS)for their financial support on Advanced Steels for Green Planet Project.The authors would also like to greatly thank the members of the“Formability Laboratory”and“Advanced Steels and Thermomechanically Processed Engineering Ma-terials Laboratory”for their help and support。
文摘The effects of deformation temperature on the transformation-induced plasticity(TRIP)-aided 304L,twinning-induced plasti-city(TWIP)-assisted 316L,and highly alloyed stable 904L austenitic stainless steels were compared for the first time to tune the mechan-ical properties,strengthening mechanisms,and strength-ductility synergy.For this purpose,the scanning electron microscopy(SEM),electron backscattered diffraction(EBSD),X-ray diffraction(XRD),tensile testing,work-hardening analysis,and thermodynamics calcu-lations were used.The induced plasticity effects led to a high temperature-dependency of work-hardening behavior in the 304L and 316L stainless steels.As the deformation temperature increased,the metastable 304L stainless steel showed the sequence of TRIP,TWIP,and weakening of the induced plasticity mechanism;while the disappearance of the TWIP effect in the 316L stainless steel was also observed.However,the solid-solution strengthening in the 904L superaustenitic stainless steel maintained the tensile properties over a wide temper-ature range,surpassing the performance of 304L and 316L stainless steels.In this regard,the dependency of the total elongation on the de-formation temperature was less pronounced for the 904L alloy due to the absence of additional plasticity mechanisms.These results re-vealed the importance of solid-solution strengthening and the associated high friction stress for superior mechanical behavior over a wide temperature range.
文摘Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded austenitic stainless steel parts is limited owing to the micro bulging distortion that occurs on the back surface of the partial penetration side.In this paper,non-penetration lap laser welding experiments,were conducted on galvanized and SUS304 austenitic stainless steel plates using a fiber laser,to investigate the mechanism of bulging distortion.A comparative experiment of DC01 galvanized steel-Q235 carbon steel lap laser welding was carried out,and the deflection and distortion profile of partially penetrated side of the sheets were measured using a noncontact laser interferometer.In addition,the cold-rolled SUS304 was subjected to heat holding at different temperatures and water quenching after bending to characterize its microstructure under tensile and compressive stress.The results show that,during the heating stage of the thermal cycle of laser lap welding,the partial penetration side of the SUS304 steel sheet generates compressive stress,which extrudes the material in the heat-affected zone to the outside of the back of the SUS304 steel sheet,thereby forming a bulge.The findings of these experiments can be of great value for controlling the distortion of the partial penetrated side of austenitic stainless steel sheet during laser non-penetration lap welding.
文摘The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformation behaviors of the steel,back propagation-artificial neural network(BP-ANN)with 16×8×8 hidden layer neurons was proposed.The predictability of the ANN model is evaluated according to the distribution of mean absolute error(MAE)and relative error.The relative error of 85%data for the BP-ANN model is among±5%while only 42.5%data predicted by the Arrhenius constitutive equation is in this range.Especially,at high strain rate and low temperature,the MAE of the ANN model is 2.49%,which has decreases for 18.78%,compared with conventional Arrhenius constitutive equation.
基金financially supported by the National Natural Science Foundation of China(Nos.52293395 and 52293393)the Xiongan Science and Technology Innovation Talent Project of MOST,China(No.2022XACX0500)。
文摘Understandings of the effect of hot deformation parameters close to the practical production line on grain refinement are crucial for enhancing both the strength and toughness of future rail steels.In this work,the austenite dynamic recrystallization(DRX)behaviors of a eutectoid pearlite rail steel were studied using a thermo-mechanical simulator with hot deformation parameters frequently employed in rail production lines.The single-pass hot deformation results reveal that the prior austenite grain sizes(PAGSs)for samples with different deformation reductions decrease initially with an increase in deformation temperature.However,once the deformation temperature is beyond a certain threshold,the PAGSs start to increase.It can be attributed to the rise in DRX volume fraction and the increase of DRX grain with deformation temperature,respectively.Three-pass hot deformation results show that the accumulated strain generated in the first and second deformation passes can increase the extent of DRX.In the case of complete DRX,PAGS is predominantly determined by the deformation temperature of the final pass.It suggests a strategic approach during industrial production where part of the deformation reduction in low temperature range can be shifted to the medium temperature range to release rolling mill loads.
文摘The equation which reflects the relationship between the retained austenite and strain has been proposed and clear TRIP can be obtained while the S value (An index of retained austenite stability) is less than 6.5 for Silicon-Manganese TRIP steel
基金Special Fund for the Major Basic Research Projects(No.G1 9990 650 )
文摘It was found that hydrogen induced delayed failure could occur in 308L and 347L weld metals,and the threshold stress intensities of 308L and 347L welds were lower than that of 304L austenitic stainless steel.When dynamically charged under load on a single edge notched specimen,the threshold stress intensities of 308L,347L and 304L decrease with the increase in the diffusible hydrogen content C 0 and the experimental results are as follows:K ⅠH =85.2-10.7 ln C 0 (308L),K ⅠH =76.1-9.3 ln C 0 (347L),K ⅠH =91.7-10.1 ln C 0 (304L).The morphology of the hydrogen induced delayed fracture in the three materials are correlated with the K Ⅰ and C 0 values.
基金supported by the Project of Scientific and Technical Supporting Program of China during the 11th Five-Year Plan(No.2006BAE03A06)
文摘Effects of silicon (Si) content on the stability of retained austenite and temper embrittlement of ultrahigh strength steels were investigated using X-ray diffraction (XRD),transmission electron microscopy (TEM),and other experimental methods.The results show that Si can suppress temper embrittlement,improve temper resistance,and hinder the decomposition of retained austenite.Reversed austenite appears gradually with the increase of Si content during tempering.Si has a significant effect on enhancing carbon (C) partitioning and improving the stability of retained austenite.Si and C atoms are mutually exclusive in lath bainite,while they attract each other in austenite.ε-carbides are found in 1.8wt% Si steel tempered at 250℃,and they get coarsened obviously when tempered at 400℃,leading to temper embrittlement.Not ε-carbides but acicular or lath carbides lead to temper embrittlement in 0.4wt% Si steel,which can be inferred as cementites and composite compounds.Temper embrittlement is closely related to the decomposition of retained austenite and the formation of reversed austenite.
基金Item Sponsored by National High Technology Research and Development Program of China(2002AA302501)
文摘Using thermomechanical simulation experiment, the kinetics of the isothermal transformation of austenite to ferrite in two HSLA low-carbon steels containing different amounts of niobium was investigated under the conditions of both deformation and undeformation. The results of optical microstructure observation and quantitative metallography analysis showed that the kinetics of the isothermal transformation of austenite to ferrite in lower niobium steel with and without deformation suggests a stage mechanism, wherein there exists a linear relationship between the logarithms of holding time and ferrite volume fraction according to Avrami equation, whereas the isothermal transformation of austenite to ferrite in high niobium steel proceeds via a two stage mechanism according to micrographs, wherein, the nucleation rate of ferrite in the initial stage of transformation is low, and in the second stage, the rate of transformation is high and the transformation of residual austenite to ferrite is rapidly complete. Using carbon extraction replica TEM, niobium carbide precipitation for different holding time was investigated and the results suggested that NbC precipitation and the presence of solute niobium would influence the transformation of austenite to ferrite. The mechanism of the effect of niobium on the isothermal transformation was discussed.
文摘The systematic chemical compositions including common C, Si, Mn, Al, and micro-alloying elements of Ti and Nb were designed for high volume fraction of retained austenite as much as possible. The thermo-cycle experiments were conducted by using Gleeble 2000 thermo-dynamic test machine for finding the appropriate composition. The experimental results showed that chemical composition had a significant effect on retained austenite, and the appropriate compositions were determined for commercial production of TRIP steels.
文摘An austenitic antibacterial stainless steel is reported in this paper. The very fine and dispersive ε-Cu precipitations in the matrix of the antibacterial steel after the antibacterial treatment endow the steel with antibacterial function. The antibacterial function is strong, long-term and broad-spectrum, and can be maintained even after repeated wear and long time dipping in water. The steel is safe for human body and could be used widely in daily application.
文摘The influence of prior austenite deformed at different temperature on the subsequent continuous cooling bainitic transformation has been investigated in an C-Ma-Cr-Ni-Mo plastic die steel. The results show that the prior deformation in low temperature region of austenite retards significantly the bainitic transformation. For the same continuous cooling schedule, as austenite deformed at lower temperature, the quantity of the classical sheaf-like bainite becomes less. The present results show that severe deformation leads to mechanical stabilization of austenite and causes the difficulty of bainitic ferrite propagation into the austenite.
基金Item Sponsored by National Basic Research Programof China (G2000067208-4)
文摘The effect of compressive deformation of austenite on continuous cooling transformation microstructures for 22CrSH gear steel has been investigated using a Gleeble 1500 thermal simulator. The experimental results show that the deformation of austenite promotes the formation of proeutectoid ferrite and pearlite, and leads to the increase of critical cooling rate of proeutectoid ferrite plus pearlite microstructure. The grain boundary allotriomorphic ferrite occupies the austenite grain surfaces when the prior deformation takes place or the cooling rate is decreased, which causes a transition from bainite to acicular ferrite. The deformation enhances the stability of transformation from austenite to acicular ferrite, which results in an increase of M/A constituent.