The detection of brain disease is an essential issue in medical and research areas.Deep learning techniques have shown promising results in detecting and diagnosing brain diseases using magnetic resonance imaging(MRI)...The detection of brain disease is an essential issue in medical and research areas.Deep learning techniques have shown promising results in detecting and diagnosing brain diseases using magnetic resonance imaging(MRI)images.These techniques involve training neural networks on large datasets of MRI images,allowing the networks to learn patterns and features indicative of different brain diseases.However,several challenges and limitations still need to be addressed further to improve the accuracy and effectiveness of these techniques.This paper implements a Feature Enhanced Stacked Auto Encoder(FESAE)model to detect brain diseases.The standard stack auto encoder’s results are trivial and not robust enough to boost the system’s accuracy.Therefore,the standard Stack Auto Encoder(SAE)is replaced with a Stacked Feature Enhanced Auto Encoder with a feature enhancement function to efficiently and effectively get non-trivial features with less activation energy froman image.The proposed model consists of four stages.First,pre-processing is performed to remove noise,and the greyscale image is converted to Red,Green,and Blue(RGB)to enhance feature details for discriminative feature extraction.Second,feature Extraction is performed to extract significant features for classification using DiscreteWavelet Transform(DWT)and Channelization.Third,classification is performed to classify MRI images into four major classes:Normal,Tumor,Brain Stroke,and Alzheimer’s.Finally,the FESAE model outperforms the state-of-theart,machine learning,and deep learning methods such as Artificial Neural Network(ANN),SAE,Random Forest(RF),and Logistic Regression(LR)by achieving a high accuracy of 98.61% on a dataset of 2000 MRI images.The proposed model has significant potential for assisting radiologists in diagnosing brain diseases more accurately and improving patient outcomes.展开更多
针对现有恶意域名检测算法对于家族恶意域名检测精度不高和实时性不强的问题,提出一种基于BiLSTM-DAE的恶意域名检测算法。通过利用双向长短时记忆神经网络(Bi-directional Long Short Term Memory,BiLSTM)提取域名字符组合的上下文序...针对现有恶意域名检测算法对于家族恶意域名检测精度不高和实时性不强的问题,提出一种基于BiLSTM-DAE的恶意域名检测算法。通过利用双向长短时记忆神经网络(Bi-directional Long Short Term Memory,BiLSTM)提取域名字符组合的上下文序列特征,并结合深度自编码网络(Deep Auto-Encoder,DAE)逐层压缩感知提取类内有共性和类间有区分性的强字符构词特征并进行分类。实验结果表明,与当前主流恶意域名检测算法相比,该算法在保持检测开销较小的基础上,具有更高的检测精度。展开更多
To address the difficulties in fusing multi-mode sensor data for complex industrial machinery, an adaptive deep coupling convolutional auto-encoder (ADCCAE) fusion method was proposed. First, the multi-mode features e...To address the difficulties in fusing multi-mode sensor data for complex industrial machinery, an adaptive deep coupling convolutional auto-encoder (ADCCAE) fusion method was proposed. First, the multi-mode features extracted synchronously by the CCAE were stacked and fed to the multi-channel convolution layers for fusion. Then, the fused data was passed to all connection layers for compression and fed to the Softmax module for classification. Finally, the coupling loss function coefficients and the network parameters were optimized through an adaptive approach using the gray wolf optimization (GWO) algorithm. Experimental comparisons showed that the proposed ADCCAE fusion model was superior to existing models for multi-mode data fusion.展开更多
随着虚拟专用网(VPN)技术的广泛应用,实时VPN流量识别已成为网络管理和安全维护中越来越重要的任务.加密流量使得从原始流量中提取特征变得极具挑战性,现有的VPN流量识别方法通常存在高维数据特征提取困难的问题.提出了一种在DAE(Denois...随着虚拟专用网(VPN)技术的广泛应用,实时VPN流量识别已成为网络管理和安全维护中越来越重要的任务.加密流量使得从原始流量中提取特征变得极具挑战性,现有的VPN流量识别方法通常存在高维数据特征提取困难的问题.提出了一种在DAE(Denoising Auto-Encoder,降噪自编码器)的网络结构基础上加入了LSTM(Long Short Term Memory,长短时记忆)的模型,将深度学习相关技术融入加密流量识别技术之中,使一直存在的难以处理高维数据以及特征提取等问题得到解决.展开更多
基金supported by financial support from Universiti Sains Malaysia(USM)under FRGS Grant Number FRGS/1/2020/TK03/USM/02/1the School of Computer Sciences USM for their support.
文摘The detection of brain disease is an essential issue in medical and research areas.Deep learning techniques have shown promising results in detecting and diagnosing brain diseases using magnetic resonance imaging(MRI)images.These techniques involve training neural networks on large datasets of MRI images,allowing the networks to learn patterns and features indicative of different brain diseases.However,several challenges and limitations still need to be addressed further to improve the accuracy and effectiveness of these techniques.This paper implements a Feature Enhanced Stacked Auto Encoder(FESAE)model to detect brain diseases.The standard stack auto encoder’s results are trivial and not robust enough to boost the system’s accuracy.Therefore,the standard Stack Auto Encoder(SAE)is replaced with a Stacked Feature Enhanced Auto Encoder with a feature enhancement function to efficiently and effectively get non-trivial features with less activation energy froman image.The proposed model consists of four stages.First,pre-processing is performed to remove noise,and the greyscale image is converted to Red,Green,and Blue(RGB)to enhance feature details for discriminative feature extraction.Second,feature Extraction is performed to extract significant features for classification using DiscreteWavelet Transform(DWT)and Channelization.Third,classification is performed to classify MRI images into four major classes:Normal,Tumor,Brain Stroke,and Alzheimer’s.Finally,the FESAE model outperforms the state-of-theart,machine learning,and deep learning methods such as Artificial Neural Network(ANN),SAE,Random Forest(RF),and Logistic Regression(LR)by achieving a high accuracy of 98.61% on a dataset of 2000 MRI images.The proposed model has significant potential for assisting radiologists in diagnosing brain diseases more accurately and improving patient outcomes.
文摘针对现有恶意域名检测算法对于家族恶意域名检测精度不高和实时性不强的问题,提出一种基于BiLSTM-DAE的恶意域名检测算法。通过利用双向长短时记忆神经网络(Bi-directional Long Short Term Memory,BiLSTM)提取域名字符组合的上下文序列特征,并结合深度自编码网络(Deep Auto-Encoder,DAE)逐层压缩感知提取类内有共性和类间有区分性的强字符构词特征并进行分类。实验结果表明,与当前主流恶意域名检测算法相比,该算法在保持检测开销较小的基础上,具有更高的检测精度。
文摘To address the difficulties in fusing multi-mode sensor data for complex industrial machinery, an adaptive deep coupling convolutional auto-encoder (ADCCAE) fusion method was proposed. First, the multi-mode features extracted synchronously by the CCAE were stacked and fed to the multi-channel convolution layers for fusion. Then, the fused data was passed to all connection layers for compression and fed to the Softmax module for classification. Finally, the coupling loss function coefficients and the network parameters were optimized through an adaptive approach using the gray wolf optimization (GWO) algorithm. Experimental comparisons showed that the proposed ADCCAE fusion model was superior to existing models for multi-mode data fusion.
文摘随着虚拟专用网(VPN)技术的广泛应用,实时VPN流量识别已成为网络管理和安全维护中越来越重要的任务.加密流量使得从原始流量中提取特征变得极具挑战性,现有的VPN流量识别方法通常存在高维数据特征提取困难的问题.提出了一种在DAE(Denoising Auto-Encoder,降噪自编码器)的网络结构基础上加入了LSTM(Long Short Term Memory,长短时记忆)的模型,将深度学习相关技术融入加密流量识别技术之中,使一直存在的难以处理高维数据以及特征提取等问题得到解决.