期刊文献+
共找到3,831篇文章
< 1 2 192 >
每页显示 20 50 100
Enhancing visual security: An image encryption scheme based on parallel compressive sensing and edge detection embedding
1
作者 王一铭 黄树锋 +2 位作者 陈煌 杨健 蔡述庭 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期287-302,共16页
A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete... A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete wavelet transform.Then, the coefficient matrix is scrambled and compressed to obtain a size-reduced image using the Fisher–Yates shuffle and parallel compressive sensing. Subsequently, to increase the security of the proposed algorithm, the compressed image is re-encrypted through permutation and diffusion to obtain a noise-like secret image. Finally, an adaptive embedding method based on edge detection for different carrier images is proposed to generate a visually meaningful cipher image. To improve the plaintext sensitivity of the algorithm, the counter mode is combined with the hash function to generate keys for chaotic systems. Additionally, an effective permutation method is designed to scramble the pixels of the compressed image in the re-encryption stage. The simulation results and analyses demonstrate that the proposed algorithm performs well in terms of visual security and decryption quality. 展开更多
关键词 visual security image encryption parallel compressive sensing edge detection embedding
下载PDF
Machine learning algorithm partially reconfigured on FPGA for an image edge detection system
2
作者 Gracieth Cavalcanti Batista Johnny Oberg +3 位作者 Osamu Saotome Haroldo F.de Campos Velho Elcio Hideiti Shiguemori Ingemar Soderquist 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第2期48-68,共21页
Unmanned aerial vehicles(UAVs)have been widely used in military,medical,wireless communications,aerial surveillance,etc.One key topic involving UAVs is pose estimation in autonomous navigation.A standard procedure for... Unmanned aerial vehicles(UAVs)have been widely used in military,medical,wireless communications,aerial surveillance,etc.One key topic involving UAVs is pose estimation in autonomous navigation.A standard procedure for this process is to combine inertial navigation system sensor information with the global navigation satellite system(GNSS)signal.However,some factors can interfere with the GNSS signal,such as ionospheric scintillation,jamming,or spoofing.One alternative method to avoid using the GNSS signal is to apply an image processing approach by matching UAV images with georeferenced images.But a high effort is required for image edge extraction.Here a support vector regression(SVR)model is proposed to reduce this computational load and processing time.The dynamic partial reconfiguration(DPR)of part of the SVR datapath is implemented to accelerate the process,reduce the area,and analyze its granularity by increasing the grain size of the reconfigurable region.Results show that the implementation in hardware is 68 times faster than that in software.This architecture with DPR also facilitates the low power consumption of 4 mW,leading to a reduction of 57%than that without DPR.This is also the lowest power consumption in current machine learning hardware implementations.Besides,the circuitry area is 41 times smaller.SVR with Gaussian kernel shows a success rate of 99.18%and minimum square error of 0.0146 for testing with the planning trajectory.This system is useful for adaptive applications where the user/designer can modify/reconfigure the hardware layout during its application,thus contributing to lower power consumption,smaller hardware area,and shorter execution time. 展开更多
关键词 Dynamic partial reconfiguration(DPR) Field programmable gate array(FPGA)implementation image edge detection Support vector regression(SVR) Unmanned aerial vehicle(UAV) pose estimation
下载PDF
Flash-based in-memory computing for stochastic computing in image edge detection 被引量:1
3
作者 Zhaohui Sun Yang Feng +6 位作者 Peng Guo Zheng Dong Junyu Zhang Jing Liu Xuepeng Zhan Jixuan Wu Jiezhi Chen 《Journal of Semiconductors》 EI CAS CSCD 2023年第5期145-149,共5页
The“memory wall”of traditional von Neumann computing systems severely restricts the efficiency of data-intensive task execution,while in-memory computing(IMC)architecture is a promising approach to breaking the bott... The“memory wall”of traditional von Neumann computing systems severely restricts the efficiency of data-intensive task execution,while in-memory computing(IMC)architecture is a promising approach to breaking the bottleneck.Although variations and instability in ultra-scaled memory cells seriously degrade the calculation accuracy in IMC architectures,stochastic computing(SC)can compensate for these shortcomings due to its low sensitivity to cell disturbances.Furthermore,massive parallel computing can be processed to improve the speed and efficiency of the system.In this paper,by designing logic functions in NOR flash arrays,SC in IMC for the image edge detection is realized,demonstrating ultra-low computational complexity and power consumption(25.5 fJ/pixel at 2-bit sequence length).More impressively,the noise immunity is 6 times higher than that of the traditional binary method,showing good tolerances to cell variation and reliability degradation when implementing massive parallel computation in the array. 展开更多
关键词 in-memory computing stochastic computing NOR flash memory image edge detection
下载PDF
An Active Image Forgery Detection Approach Based on Edge Detection
4
作者 Hüseyin Bilal Macit Arif Koyun 《Computers, Materials & Continua》 SCIE EI 2023年第4期1603-1619,共17页
Recently, digital images have become the most used data, thanks tohigh internet speed and high resolution, cheap and easily accessible digitalcameras. We generate, transmit and store millions of images every second.Mo... Recently, digital images have become the most used data, thanks tohigh internet speed and high resolution, cheap and easily accessible digitalcameras. We generate, transmit and store millions of images every second.Most of these images are insignificant images containing only personal information.However, in many fields such as banking, finance, public institutions,and educational institutions, the images of many valuable objects like IDcards, photographs, credit cards, and transaction receipts are stored andtransmitted to the digital environment. These images are very significantand must be secured. A valuable image can be maliciously modified by anattacker. The modification of an image is sometimes imperceptible even by theperson who stored the image. In this paper, an active image forgery detectionmethod that encodes and decodes image edge information is proposed. Theproposed method is implemented by designing an interface and applied on atest image which is frequently used in the literature. Various tampering attacksare simulated to test the fidelity of the method. The method not only notifieswhether the image is forged or not but also marks the tampered region ofthe image. Also, the proposed method successfully detected tampered regionsafter geometric attacks, even on self-copy attacks. Also, it didn’t fail on JPEGcompression. 展开更多
关键词 image forgery image tampering edge detection
下载PDF
Image edge detection based on nonsubsampled contourlet transform and mathematical morphology 被引量:1
5
作者 何坤贤 王庆 +1 位作者 肖彦昌 王晓兵 《Journal of Southeast University(English Edition)》 EI CAS 2012年第4期445-450,共6页
A novel algorithm for image edge detection is presented. This algorithm combines the nonsubsampled contourlet transform and the mathematical morphology. First, the source image is decomposed by the nonsubsampled conto... A novel algorithm for image edge detection is presented. This algorithm combines the nonsubsampled contourlet transform and the mathematical morphology. First, the source image is decomposed by the nonsubsampled contourlet transform into multi-scale and multi-directional subbands. Then the edges in the high-frequency and low-frequency sub-bands are respectively extracted by the dualthreshold modulus maxima method and the mathematical morphology operator. Finally, the edges from the high- frequency and low-frequency sub-bands are integrated to the edges of the source image, which are refined, and isolated points are excluded to achieve the edges of the source image. The simulation results show that the proposed algorithm can effectively suppress noise, eliminate pseudo-edges and overcome the adverse effects caused by uneven illumination to a certain extent. Compared with the traditional methods such as LoG, Sobel, and Carmy operators and the modulus maxima algorithm, the proposed method can maintain sufficient positioning accuracy and edge details, and it can also make an improvement in the completeness, smoothness and clearness of the outline. 展开更多
关键词 image edge detection nonsubsampled contourlet transform NSCT modulus maxima DUAL-THRESHOLD mathematical morphology structural elements
下载PDF
Image edge detection based on beamlet transform 被引量:10
6
作者 Li Jing Huang Peikang Wang Xiaohu Pan Xudong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第1期1-5,共5页
Combining beamlet transform with steerable filters, a new edge detection method based on line gradient is proposed. Compared with operators based on point local properties, the edge-detection results with this method ... Combining beamlet transform with steerable filters, a new edge detection method based on line gradient is proposed. Compared with operators based on point local properties, the edge-detection results with this method achieve higher SNR and position accuracy, and are quite helpful for image registration, object identification, etc. Some edge-detection experiments on optical and SAR images that demonstrate the significant improvement over classical edge operators axe also presented. Moreover, the template matching result based on edge information of optical reference image and SAR image also proves the validity of this method. 展开更多
关键词 edge detection beamlet transform steerable filters optical image SAR image.
下载PDF
Edge Detection of River in SAR Image Based on Contourlet Modulus Maxima and Improved Mathematical Morphology 被引量:5
7
作者 吴一全 朱丽 +2 位作者 郝亚冰 李立 卢文平 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期478-483,共6页
To cope with the problems that edge detection operators are liable to make the detected edges too blurry for synthetic aperture radar(SAR)images,an edge detection method for detecting river in SAR images is proposed b... To cope with the problems that edge detection operators are liable to make the detected edges too blurry for synthetic aperture radar(SAR)images,an edge detection method for detecting river in SAR images is proposed based on contourlet modulus maxima and improved mathematical morphology.The SAR image is firstly transformed to a contourlet domain.According to the directional information and gradient information of directional subband of contourlet transform,the modulus maximum and the improved mathematical morphology are used to detect high frequency and low frequency sub-image edges,respectively.Subsequently,the edges of river in SAR image are obtained after fusing the high frequency sub-image and the low frequency sub-image.Experimental results demonstrate that the proposed edge detection method can obtain more accurate edge location and reduce false edges,compared with the Canny method,the method based on wavelet and Canny,the method based on contourlet modulus maxima,and the method based on improved(ROEWA).The obtained river edges are complete and clear. 展开更多
关键词 synthetic aperture radar(SAR) image river detection edge detection contourlet transform modulus maxima
下载PDF
Feature fusion method for edge detection of color images 被引量:4
8
作者 Ma Yu Gu Xiaodong Wang Yuanyuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第2期394-399,共6页
A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected... A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected as the features. The four features are combined together as a parameter to detect the edges of color images. Experimental results show that the method can inhibit noisy edges and facilitate the detection for weak edges. It has a better performance than conventional methods in noisy environments. 展开更多
关键词 color image processing edge detection feature extraction feature fusion
下载PDF
Edge and texture detection of metal image under high temperature and dynamic solidification condition 被引量:6
9
作者 CHEN Zu-guo LI Yong-gang +2 位作者 CHEN Xiao-fang YANG Chun-hua GUI Wei-hua 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第6期1501-1512,共12页
The zinc casting is a complicated process with high temperature, high dust content and dynamic solidification. To accurately detect the edge and texture of metal image under this condition, a sub-pixel detection based... The zinc casting is a complicated process with high temperature, high dust content and dynamic solidification. To accurately detect the edge and texture of metal image under this condition, a sub-pixel detection based on gradient entropy and adaptive four-order cubic convolution interpolation (GEAF-CCI) algorithm is proposed. This method mainly involves three procedures. Firstly, the gradient image is generated from the grey images by using gradient operator. Then, a dynamic threshold based on the maximum local gradient entropy (DTMLGE) algorithm is applied to distinguishing the edge and texture pixels from gradient images. Finally, the adaptive four-order cubic convolution interpolation (AF-CCI) algorithm is proposed for interpolating calculation of the target edges and textures according to their variation differences in different directions. The experimental result shows that the proposed algorithm can remove the jag and blur of the edges and textures, improve the edge positioning precision and reduce the false or missing detection rate. 展开更多
关键词 edge and texture detection GEAF-CCI algorithm DTMLGE algorithm metal image
下载PDF
SAR image despeckling based on edge detection and nonsubsampled second generation bandelets 被引量:3
10
作者 Zhang Wenge~(1,2),Liu Fang~(1,2),Jiao Licheng~(2,3)& Gao Xinbo~(2,3) 1.School of Computer Science and Technology,Xidian Univ.,Xi’an 710071,P.R.China 2.Key Lab.of Intelligent Perception and Image Understanding of Ministry of Education of China,Xi’an 710071,P.R.China 3.Inst,of Intelligent Information Processing,Xidian Univ.,Xi’an 710071,P.R.China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第3期519-526,共8页
To preserve the sharp features and details of the synthetic aperture radar (SAR) image effectively when despeckling, a despeckling algorithm with edge detection in nonsubsampled second generation bandelet transform ... To preserve the sharp features and details of the synthetic aperture radar (SAR) image effectively when despeckling, a despeckling algorithm with edge detection in nonsubsampled second generation bandelet transform (NSBT) domain is proposed. First, the Canny operator is utilized to detect and remove edges from the SAR image. Then the NSBT which has an optimal approximation to the edges of images and a hard thresholding rule are used to approximate the details while despeckling the edge-removed image. Finally, the removed edges are added to the reconstructed image. As the edges axe detected and protected, and the NSBT is used, the proposed algorithm reaches the state-of-the-art effect which realizes both despeckling and preserving edges and details simultaneously. Experimental results show that both the subjective visual effect and the mainly objective performance indexes of the proposed algorithm outperform that of both Bayesian wavelet shrinkage with edge detection and Bayesian least square-Gaussian scale mixture (BLS-GSM). 展开更多
关键词 computer image processing synthetic aperture radar SPECKLE edge detection nonsubsampled second generation bandelet transform Canny operator threshold shrinkage.
下载PDF
Edge detection method for remote sensing image based on morphological variable structuring element 被引量:4
11
作者 YAO Li juan WANG Xiao peng +1 位作者 WANG Wei MA Wen gang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第3期233-240,共8页
There are problems such as incomplete edges and poor noise suppression when a single fixed morphological structuring element is used to detect the edges in remote sensing images. For this reason, a morphological edge ... There are problems such as incomplete edges and poor noise suppression when a single fixed morphological structuring element is used to detect the edges in remote sensing images. For this reason, a morphological edge detection method for remote sensing image based on variable structuring element is proposed. Firstly, the structuring elements with different scales and multiple directions are constructed according to the diversity of remote sensing imagery targets. In order to suppress the noise of the target background and highlight the edge of the image target in the remote sensing image by adaptive Top hat and Bottom hat transform, the corresponding adaptive morphological operations are constructed based on variable structuring elements; Secondly, adaptive morphological edge detection is used to obtain multiple images with different scales and directional edge features; Finally, the image edges are obtained by weighted summation of each direction edge, and then the least square is used to fit the edges for accurate location of the edge contour of the target. The experimental results show that the proposed method not only can detect the complete edge of remote sensing image, but also has high edge detection accuracy and superior anti-noise performance. Compared with classical edge detection and the morphological edge detection with a fixed single structuring element, the proposed method performs better in edge detection effect, and the accuracy of detection can reach 95 % 展开更多
关键词 edge detection remote sensing image variable structuring element least squares method
下载PDF
EDGE DETECTION METHOD OF REMOTE SENSING IMAGES BASED ON MATHEMATICAL MORPHOLOGY OF MULTI-STRUCTURE ELEMENTS 被引量:2
12
作者 LINHui DUPei-jun +1 位作者 ZHAOChang-sheng SHUNing 《Chinese Geographical Science》 SCIE CSCD 2004年第3期263-268,共6页
This paper puts forward an effective, specific algorithm for edge detection. Based on multi-structure elements of gray mathematics morphology, in the light of difference between noise and edge shape of RS images, the ... This paper puts forward an effective, specific algorithm for edge detection. Based on multi-structure elements of gray mathematics morphology, in the light of difference between noise and edge shape of RS images, the paper establishes multi-structure elements to detect edge by utilizing the grey form transformation principle. Compared with some classical edge detection operators, such as Sobel Edge Detection Operator, LOG Edge Detection Operator, and Canny Edge Detection Operator, the experiment indicates that this new algorithm possesses very good edge detection ability, which can detect edges more effectively, but its noise-resisting ability is relatively low. Because of the bigger noise & remote sensing image, the authors probe into putting forward other edge detection method based on combination of wavelet directivity checkout technology and small-scale Mathematical Morphology finally. So, position at the edge can be accurately located, the noise can be inhibited to a certain extent and the effect of edge detection is obvious. 展开更多
关键词 Mathematical Morphology multi-spectral RS image edge detection multi-structure elements wavelet transformation
下载PDF
Image Edge Detection Based on Wavelet Transform  被引量:1
13
作者 张晔 时萌 任广辉 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1996年第3期33-37,共5页
Based on the multiresolution decomposition and local time-frequency analysis of the wavelet transform, the image edge detection by wavelet transform is studied. Two methods are dealt with, which are the channel exclus... Based on the multiresolution decomposition and local time-frequency analysis of the wavelet transform, the image edge detection by wavelet transform is studied. Two methods are dealt with, which are the channel exclusive-OR operation and the high frequency energy-conserving edge detection. In accordance with the contradictory between antinoise ability and detection accuracy, the mutual-energy cross technique for noise suppression is proposed. By computer simulation, the experimental results are obtained on a test image and Lena image. The noise supressing ability is improved and the signal-noise ratio is increased by more than 3dB. 展开更多
关键词 ss:Wavelet TRANSFORM edge detection image DECOMPOSITION
下载PDF
Edge detection of potential field data based on image processing methods 被引量:2
14
作者 TAN Xiaodi ZHANG Dailei MA Guoqing 《Global Geology》 2018年第2期134-142,共9页
The conventional methods of edge detection can roughly delineate edge position of geological bodies,but there are still some problems such as low detection accuracy and being susceptible to noise interference.In this ... The conventional methods of edge detection can roughly delineate edge position of geological bodies,but there are still some problems such as low detection accuracy and being susceptible to noise interference.In this paper,three image processing methods,Canny,Lo G and Sobel operators are briefly introduced,and applied to edge detection to determine the edge of geological bodies.Furthermore,model data is built to analyze the edge detection ability of this image processing methods,and compare with conventional methods.Combined with gravity anomaly of Sichuan basin and magnetic anomaly of Zhurihe area,the detection effect of image processing methods is further verified in real data.The results show that image processing methods can be applied to effectively identify the edge of geological bodies.Moreover,when both positive and negative anomalies exist and noise is abundant,fake edge can be avoided and edge division is clearer,and satisfactory results of edge detection are obtained. 展开更多
关键词 edge detection image processing CANNY OPERATOR LOG OPERATOR SOBEL OPERATOR
下载PDF
Medical Image Edge Detection Based on EMD Method 被引量:1
15
作者 PENG Shichun LIU Jian YAN Guoping 《Wuhan University Journal of Natural Sciences》 CAS 2006年第5期1287-1291,共5页
As a new image analysis technique, Empirical Mode Decomposition (EMD) has been drawn more attention in recent years. In this paper, we proposed a fast EMD method for the edge detection of medical images. We implemen... As a new image analysis technique, Empirical Mode Decomposition (EMD) has been drawn more attention in recent years. In this paper, we proposed a fast EMD method for the edge detection of medical images. We implemented the method in the following steps: a) Decompose the original medical image with the image pyramid technique; b) Implement the EMD at the low resolution level image; c) Map the Intrinsic Mode Functions (IMFs) into the original image; d) Use the edge detector in a coarse IMF at the beginning of the procedure; e) Trace the detected result to the finest IMF to obtain the final image edge. Experimental results demonstrated the effectiveness of the proposed method. 展开更多
关键词 edge detection empirical mode decomposition intrinsic mode function image pyramid multl-resolution map
下载PDF
Edge detection and its application to recognition of arc weld image 被引量:1
16
作者 陈希章 林涛 +1 位作者 郎玉友 陈善本 《China Welding》 EI CAS 2007年第4期20-26,共7页
Abstract Image sensor has been one of the key technologies in intellectualized robotics welding. Edge detection plays an important role when the vision technology is applied in intellectualized welding robotics techno... Abstract Image sensor has been one of the key technologies in intellectualized robotics welding. Edge detection plays an important role when the vision technology is applied in intellectualized welding robotics technologies. There are all kinds of noises in welding environment. The algorithms in common use cannot be applied to the recognition of welding environment directly. The edge of images can be fell into four types. The weld images are classified by the characteristic of welding environment in this paper. This paper analyzes some algorithms of edge detection according to the character of welding image, some relative advantages and disadvantages are pointed out when these algorithms are used in this field, and some suggestions are given. The feature extraction of weld seam and weld pool are two typical problems in the realization of intellectualized welding. Their edge features are extracted and the results show the applicability of different edge detectors. The trndeoff between precision and calculated time is also considered for different application. 展开更多
关键词 weld image edge detection weld seam weld pool
下载PDF
Watershed-based Image Segmentation with Region Merging and Edge Detection 被引量:1
17
作者 Salman N H 《High Technology Letters》 EI CAS 2003年第1期58-63,共6页
The clustering technique is used to examine each pixel in the image which assigned to one of the clusters depending on the minimum distance to obtain primary classified image into different intensity regions. A waters... The clustering technique is used to examine each pixel in the image which assigned to one of the clusters depending on the minimum distance to obtain primary classified image into different intensity regions. A watershed transformation technique is then employes. This includes: gradient of the classified image, dividing the image into markers, checking the Marker Image to see if it has zero points (watershed lines). The watershed lines are then deleted in the Marker Image created by watershed algorithm. A Region Adjacency Graph (RAG) and Region Adjacency Boundary (RAB) are created between two regions from Marker Image. Finally region merging is done according to region average intensity and two edge strengths (T1, T2). The approach of the authors is tested on remote sensing and brain MR medical images. The final segmentation result is one closed boundary per actual region in the image. 展开更多
关键词 image segmentation edge detection WATERSHED K-MEANS edge strength brain images remote sensing images region adjacency graph (RAG).
下载PDF
An Improved Algorithm for Image Edge Detection Based on Lifting Scheme 被引量:8
18
作者 张红英 吴斌 彭启琮 《Journal of Electronic Science and Technology of China》 2005年第2期113-115,133,共4页
Wavelet transform is an ideal way for edge detection because of its multi-scale property, localization both in time and frequency domain, sensitivity to the abrupt change of signals, and so on. An improved algorithm f... Wavelet transform is an ideal way for edge detection because of its multi-scale property, localization both in time and frequency domain, sensitivity to the abrupt change of signals, and so on. An improved algorithm for image edge detection based on Lifting Scheme is proposed in this paper. The simulation results show that our improved method can better reflect edge information of images. 展开更多
关键词 Lifting Scheme edge detection image processing second generation wavelet
下载PDF
IMAGE ANALYSIS BASED ON EDGE DETECTION TECHNIQUES
19
作者 NASSIR H.SALMAN(纳瑟) +1 位作者 LIU Chong-qing(刘重庆) 《Journal of Shanghai Jiaotong university(Science)》 EI 2002年第2期198-203,共6页
A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies ... A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies edge detection technique to obtain a Difference In Strength (DIS) map. An initial segmented result is obtained based on K means clustering technique and the minimum distance. Then the region process is modeled by MRF to obtain an image that contains different intensity regions. The gradient values are calculated and then the watershed technique is used. DIS calculation is used for each pixel to define all the edges (weak or strong) in the image. The DIS map is obtained. This help as priority knowledge to know the possibility of the region segmentation by the next step (MRF), which gives an image that has all the edges and regions information. In MRF model, gray level l , at pixel location i , in an image X , depends on the gray levels of neighboring pixels. The segmentation results are improved by using watershed algorithm. After all pixels of the segmented regions are processed, a map of primitive region with edges is generated. The edge map is obtained using a merge process based on averaged intensity mean values. A common edge detectors that work on (MRF) segmented image are used and the results are compared. The segmentation and edge detection result is one closed boundary per actual region in the image. 展开更多
关键词 Difference In Strength (DIS) MARKOV Random Field (MRF) WATERSHED algorithm K-means edge detection image segmentation image analysis
下载PDF
A MODIFIED NONLINEAR DIFFUSION MODEL AND ITS APPLICATION TO IMAGE SMOOTHING AND EDGE DETECTION
20
作者 Xu Deliang Wang Yaguang Zhou Chuqin Shen Haiping(Department of Applied Mathematics, Jiaotong University, Shanghai 200240) 《Journal of Electronics(China)》 2001年第1期17-23,共7页
A modified version of the Cotte, Lions, Morel and Coil theory for image selective smoothing and edge detection is proposed. Comparing with their model, the most important advantage of this modification is that the con... A modified version of the Cotte, Lions, Morel and Coil theory for image selective smoothing and edge detection is proposed. Comparing with their model, the most important advantage of this modification is that the convolution with Gaussian processes in the filtering process is replaced by solving an initial-boundary value problem for the heat equation, which simplifies the numerical scheme to some extent. Numerical experiments on natural images are presented for this model. 展开更多
关键词 Multiscale image analysis edge detection PARABOLIC EQUATION NONLINEAR diffu SION
下载PDF
上一页 1 2 192 下一页 到第
使用帮助 返回顶部