针对某自动装填机构轻量化设计中出现参数多、模型计算量大等问题,提出将全局灵敏度分析与代理模型技术相结合的优化策略。通过基于Morris轨迹的全局灵敏度分析从32个系统参数中确定14个关键参数,基于拉丁超立方采样技术及径向基函数神...针对某自动装填机构轻量化设计中出现参数多、模型计算量大等问题,提出将全局灵敏度分析与代理模型技术相结合的优化策略。通过基于Morris轨迹的全局灵敏度分析从32个系统参数中确定14个关键参数,基于拉丁超立方采样技术及径向基函数神经网络技术(Radial Basis Function Neural Networks,RBFNN)建立系统响应关于关键参数的代理模型,用多岛遗传算法对系统参数进行优化求解,致机构重量下降21.8%。数值检验结果表明仅含关键参数的代理模型预测精度较高,证明该方法在多参数复杂系统结构轻量化设计中的有效性。展开更多
文摘针对某自动装填机构轻量化设计中出现参数多、模型计算量大等问题,提出将全局灵敏度分析与代理模型技术相结合的优化策略。通过基于Morris轨迹的全局灵敏度分析从32个系统参数中确定14个关键参数,基于拉丁超立方采样技术及径向基函数神经网络技术(Radial Basis Function Neural Networks,RBFNN)建立系统响应关于关键参数的代理模型,用多岛遗传算法对系统参数进行优化求解,致机构重量下降21.8%。数值检验结果表明仅含关键参数的代理模型预测精度较高,证明该方法在多参数复杂系统结构轻量化设计中的有效性。